Abderrahim Frih, Zakaria Chalh, and Mostafa Mrabti


  1. [1] D.K. Young, I.U. Utkin, and U. Ozguner, A control engineer’s guide to sliding mode control, IEEE Transactions on Control Systems Technology, 7(2), 1999, 328–342.
  2. [2] M. Paynter, Analysis and design of engineering systems (Cambridge, MA: MIT Press, 1961).
  3. [3] D.C Karnopp and C.R. Rosenberg, System dynamics: A unified approach (New York: John Wiley, 1975).
  4. [4] P. Breedveld, Essential gyrators and equivalence rules for 3-port junction structures, Journal of The Franklin Institute, 318(2), 1984, 77–89.
  5. [5] G. Dauphin-Tanguy, P. Borne, and M. Lebrun, Order reduction of multi-time scale systems using bond graph, the reciprocal system and the singular perturbation method, Journal of the Franklin Institute, 319(1/2), 1985, 157–171.
  6. [6] G. Dauphin-Tanguy, Les bond graphs (Paris: Hermès Science Editor, 2000).
  7. [7] J. Mérida, J.T. Aguilar, and J. Dàvila, Analysis and synthesis of sliding mode control for large scale variable speed wind turbine for power optimization, Renewable Energy, 71(11), 2014, 715–728.
  8. [8] El. Mellouli, Z. Chalh, M. Alfidi, and I. Boumhidi, A new robust adaptive fuzzy sliding mode controller for a variable speed wind turbine, International Review of Automatic Control, 8(5), 2015 338–345.
  9. [9] I.V Utkin, Variable structure systems with sliding modes, IEEE Transactions on Automatic Control, 22(2), 1977, 212–222.
  10. [10] Y.J. Hung, W. Gao, and C.J Hung, Variable structure control, IEEE Transactions on Industrial Electronics, 40(1), 1993, 212–222.
  11. [11] A. Levant, Sliding order and sliding accuracy in sliding mode control, International Journal of Control, 58(6), 1993, 1247–1263.
  12. [12] G. Bartolini, L. Fridman, A. Pisano, and E. Usai, Modern sliding mode control theory. new perspectives and applications, Springer Lecture Notes in Control and Information Sciences, 375, April 2008.
  13. [13] M.P. Bongers, Modeling and identification of flexible wind turbines and a fae-torizational approach to robust control, Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, June 1994.
  14. [14] B. Boukhezzar, Sur les stratégies de commande pour l’optimisation et la régulation de puissance des éoliennes `a vitesse variable, Th`ese de doctorat, Université parix XI Orsay, 2006.
  15. [15] T. Bakka and R.H. Karimi, Bond graph modeling and simulation of wind turbine systems, Journal of Mechanical Science and Technology, 27, 2013, 1843.
  16. [16] El. Boufounas et al., Neural network sliding mode controller for a variable speed wind turbine, Control and Intelligent Systems, 41(4), 2013, 251–258.
  17. [17] H. Chih-Ming, H. Cong-Hui, and C. Fu-Sheng, Sliding mode control for variable-speed wind turbine generation systems using artificial neural network, Energy Procedia, 61, 2014, 1626–1629.
  18. [18] A.J. Koshkouei, et al., Embedded-based sliding mode control design, Control and Intelligent Systems, 41(2), 2013, 60–70.
  19. [19] J.S Lin, K.Y. Lum, and G.W. Hung. Fuzzy-grey reaching law sliding mode control for photovoltaics maximum power point tracking, Control and Intelligent Systems, 42(2), 2014, 159–166.
  20. [20] G.S. Kadwane, Frequency domain approach for sliding mode control of DC-DC buck converter, Control and Intelligent Systems, 40(2), 2012, 102.
  21. [21] J.J. Slotine and S.S. Sastry, Tracking control of nonlinear system using sliding Surface, with application to robotic manipulators, Int. Jour. of Control, 38, 1983. 465–492.
  22. [22] F. Poitiers, Etude et commande de génératrices asynchrones pour l’utilisation de l’énergie éolienne -machine asynchrone a cage autonome-machine asynchrone a double alimentation reliée au réseau, Thèse de doctorat, Université de Nantes, 2003.
  23. [23] B. Beltran, Contribution à la commande robuste des éoliennes à base de génératrice asynchrone double alimentation: Du mode glissant classique au mode glissant d’ordre supérieur, Thèse de doctorat, Université de Bretagne occidentale, France, 2010.

Important Links:

Go Back