Qiankun Yu, Guolei Wang, Tianyu Ren, Liao Wu, and Ken Chen


  1. [1] D.L. Pieper, The kinematics of manipulators under computercontrol, Doctoral Dissertation, Stanford University, CA, 1968.
  2. [2] J. Duffy, Analysis of mechanisms and robot manipulators, 1sted. (London: Edward Arnold, 1980).
  3. [3] M. Raghavan and B. Roth, Kinematic analysis of the 6Rmanipulator of general geometry, Proc. 5th Int. Symp. Robot.Res., Tokyo, 1991, 263–269.
  4. [4] M. Raghavan and B. Roth, Solving polynomial systems forthe kinematic analysis and synthesis of mechanisms and robotmanipulators, Transactions of ASME, x 117(Spec. 50th Anniversary Design Issue), 1995, 71–79.
  5. [5] S. Sasaki, Feasibility studies of kinematic problems in thecase of a class of redundant manipulators, Robotica, 13, 1995,233–241.
  6. [6] R.P. Paul and C.N. Stevenson, Kinematics of robot wrists,International Journal of Robotics Research, 2(1), 1983, 31–38.
  7. [7] O. Khatib, A unified approach for motion and force control ofrobot manipulators: The operational space formulation, IEEEJournal of Robotics and Automation, 3(1), 1987, 43–53.
  8. [8] W.A. Wolovich and H. Elliott, A computational technique forinverse kinematics, Proc. 23rd IEEE Conf. on Decision andControl, Las Vegas, 1984, 1359–1363.
  9. [9] J.E. Dennis, Jr. &and R.B. Schnabel, Numerical methods forunconstrained optimization and nonlinear equations, Societyfor Industrial and Applied Mathematics, 1993, 86–107.
  10. [10] K. Levenberg, A method for the solution of certain nonlinearproblems in least squares, Quarterly of Applied Mathematics,2, 1944, 164–166.
  11. [11] D.W. Marquardt, An algorithm for least-squares estimation ofnonlinear inequalities, SIAM Journal of Applied Mathematics,11, 1963, 431–441.
  12. [12] M. Raghavan and B. Roth, Inverse kinematics of the general6R manipulator and related linkages, Journal of MechanicalDesign, 115(3), 1993, 502–508.
  13. [13] M. Ghazvini, Reducing the inverse kinematics of manipulatorsto the solution of a generalized eigenproblem, ComputationalKinematics, 28, 1993, 15–26.
  14. [14] M.L. Husty, M. Pfurner, and H. Schrocker, A new and efficientalgorithm for the inverse kinematics of a general serial 6Rmanipulator, Mechanism and Machine Theory, 42(1), 2007,66–81.
  15. [15] F. Groh, K. Groh, and A. Verl, On the inverse kinematics ofan a priori unknown general 6R-Robot, Robotica, 31(03), 2013,455–463.
  16. [16] Z. Bingul, H.M. Ertunc, and C. Oysu, Comparison of in-verse kinematics solutions using neural network for 6R robotmanipulator with offset, IEEE Congress on ComputationalIntelligence Methods & Applications, Istanbul, Turkey, 2005,15–17.
  17. [17] P. Jha, A neural network approach for inverse kinematic ofa SCARA manipulator, International Journal of Robot &Automation, 3(1), 2014, 31–40.
  18. [18] R.L. Williams II, Inverse kinematics and singularities of manipulators with offset wrist, International Journal of Roboticsand Automation, 14(1), 1999, 1–8.
  19. [19] H. Pan, B. Fu, L. Chen, and J. Feng, The inverse kinematicssolutions of robot manipulators with offset wrist using the offsetmodification method, Advances in Automation and Robotics,1, 2011, 655–663.
  20. [20] M.K. Wu, Y.S. Kung, F.C. Lee, and W.C. Chen, Inversekinematics of robot manipulators with offset wrist, International Conference on Advanced Robotics & Intelligent Systems,Taibei, 2015, 1–6.
  21. [21] M.Z. Al-Faiz and M.S. Saleh, Inverse kinematics analysis formanipulator robot with wrist offset based on the closed-formalgorithm, International Journal of Robot & Automation, 2(4),2011, 256–264.
  22. [22] L. Wu, X. Yang, D. Miao, Y. Xie, and K. Chen, Inverse kinematics of a class of 7R 6-DOF robots with non-spherical wrist,IEEE Int. Conf. on Mechatronics & Automation, Takamatsu,27(16), 2013, 69–74.
  23. [23] O. Khatib, A unified approach for motion and force controlof robot manipulators: The operational space formulation,International Journal of Robot & Automation, 3(1), 1987,43–53.
  24. [24] T. Bajd, M. Mihelj, J. Lenarˇciˇc, A. Stanovnik, and M. Munih,Robotics, 1st ed. (London: Springer, 2010).
  25. [25] T. Sugihara, Solvability-unconcerned inverse kinematics bythe Levenberg–Marquardt method, IEEE Transactions onRobotics, 27(5), 2011, 984–991.
  26. [26] S. Kucuk and Z. Bingul, The inverse kinematics solutions of industrial robot manipulators, IEEE Int. Conf. on Mechatronics,Istanbul, 2004, 274–279.
  27. [27] P. Corke, Robotics, vision and control, 1st ed. (Berlin: Springer,2011).

Important Links:

Go Back