SOFT ROBOTICS WITH COMPLIANCE AND ADAPTATION FOR BIOMEDICAL APPLICATIONS AND FORTHCOMING CHALLENGES

Hritwick Banerjee, Zion Tsz Ho Tse, and Hongliang Ren

References

  1. [1] M. Carmel, Soft robotics: A perspective—Current trends and prospects for the future, Soft Robotics, 1(1), 2014, 5–11.
  2. [2] K. Sangbae, C. Laschi, and B. Trimmer, Soft robotics: A bio-inspired evolution in robotics, Trends in Biotechnology, 31(5), 2013, 287–294.
  3. [3] K. Autumn, C. Majidi, R.E. Groff, A. Dittmore, and R. Fearing, Effective elastic modulus of isolated gecko setal arrays, Journal of Experimental Biology, 209(18), 2006, 3558–3568.
  4. [4] D. Trivedi, C.D. Rahn, W.M. Kier, and I.D. Walker, Soft robotics: Biological inspiration, state of the art, and future research, Applied Bionics and Biomechanics, 5, 2008, 99–117.
  5. [5] R. Deimel and O. Brock, A novel type of compliant, underactuated robotic hand for dexterous grasping, The International Journal of Robotics Research, 35(1–3), 2016, 0278364915592961.
  6. [6] M.T. Tolley, R.F. Shepherd, B. Mosadegh, K.C. Galloway, M. Wehner, M. Karpelson, R.J. Wood, and G.M. Whitesides, A resilient, untethered soft robot, Soft Robotics, 1, 2014, 213–223.
  7. [7] R.J. Full, Comprehensive Physiology (Wiley, 1997), 853–930.
  8. [8] R. Daniela and M.T. Tolley, Design, fabrication and control of soft robots, Nature, 521(7553), 2015, 467–475.
  9. [9] M.H. Dickinson, C.T. Farley, R.J, Full, M.A. Koehl, R. Kram, and S. Lehmanet, How animals move: An integrative view, Science, 288(5483), 2000, 100–106.
  10. [10] S.L. Montgomery, Carnivorous caterpillars: The behavior, biogeography and conservation of Eupithecia (Lepidoptera: Geometridae) in the Hawaiian Islands, GeoJournal, 7(6), 1983, 549–556.
  11. [11] S. Seok, C.D. Onal, R. Wood, D. Rus, and S. Kim, Peristaltic locomotion with antagonistic actuators in soft robotics, IEEE International Conf. on Robotics and Automation (ICRA), Anchorage, Alaska, 2010, 1228–1233.
  12. [12] S. Sanan, P.S. Lynn, and S.T. Griffith, Pneumatic torsional actuators for inflatable robots, Journal of Mechanisms and Robotics, 6(3), 2014, 031003.
  13. [13] H.T. Lin, G.G. Leisk, and B. Trimmer, GoQBot: A caterpillarinspired soft-bodied rolling robot, Bioinspiration & Biomimetics, 6(2), 2011, 026007.
  14. [14] S. Seok, C.D. Onal, K.J. Cho, R.J. Wood, D. Rus, and S. Kim, Meshworm: A peristaltic soft robot with antagonistic nickel titanium coil actuators, Mechatronics, IEEE/ASME Transactions, 18(5), 2013, 1485–1497.
  15. [15] T. Barry, A journal of soft robotics: Why now? Soft Robotics, 1(1), 2014, 1–4.
  16. [16] V. Vitiello, S.L. Lee, T.P. Cundy, and G.Z. Yang, Emerging robotic platforms for minimally invasive surgery, Biomedical Engineering, IEEE Reviews, 6, 2013, 111–126.
  17. [17] M. Cianchetti, T. Ranzani, G. Gerboni, T. Nanayakkara, K. Althoefer, P. Dasgupta, and A. Menciassi, Soft robotics technologies to address shortcomings in today’s minimally invasive surgery: The STIFF-FLOP approach, Soft Robotics, 1(2), 2014, 122–131.
  18. [18] A. Loeve, B. Paul, and D. Jenny, Scopes too flexible. . . and too stiff, IEEE Pulse, 1(3), 2010, 26–41.
  19. [19] Development of a multi-module STIFF-FLOP manipulator, Available at http://www.stiff-flop.eu (accessed June 9, 2016).
  20. [20] R. Tommaso, M. Cianchetti, G. Gerboni, I.D. Falco, and A. Menciassi, A soft modular manipulator for minimally invasive surgery: Design and characterization of a single module, IEEE Transactions on Robotics, 32(1), 2016, 187–200.
  21. [21] P. Dupont, A. Gosline, N. Vasilyev, J. Lock, E. Butler, C. Folk, A. Cohen, R. Chen, G. Schmitz, H. Ren, and P. del Nido, Concentric tube robots for minimally invasive surgery, Hamlyn Symposium on Medical Robotics, London, UK, 2012, 7, 8.
  22. [22] G. Joshua, Y. Ding, A. Harris, T. McKenna, P. Polygerinos, D. Holland, A. Moser, and C. Walsh, Shape deposition manufacturing of a soft, atraumatic, deployable surgical grasper, Journal of Medical Devices, 8(3), 2014, 030927.
  23. [23] K. Yeongjin, S.S. Cheng, and J.P. Desai, Towards the development of a spring-based continuum robot for neurosurgery, Proc. in SPIE Medical Imaging, Renaissance Orlando, Florida, 21–26 February 2015, 94151Q–94151Q.
  24. [24] L. Xinquan, C. Lee, and H. Ren, Towards a micro pneumatic actuator with large bending deformation for medical interventions, Proc. in 7th WACBE World Congress on Bioengineering, Singapore, 2015, 76–79.
  25. [25] W.H. Chang and Y.H. Kim, Robot-assisted therapy in stroke rehabilitation, Journal of Stroke, 15(3), 2013, 174–181.
  26. [26] C. Majidi, Soft robotics: A perspective—Current trends and prospects for the future, Soft Robotics, 1(1), 2014, 5–11.
  27. [27] J.A. Blaya and H. Herr, Adaptive control of a variableimpedance ankle-foot orthosis to assist drop-foot gait, IEEE Transactions on Neural Systems Rehabilitation Engineering, 12(1), 2004, 24–31.
  28. [28] E.C. Goldfield, Y.L. Park, B.R. Chen, W.H. Hsu, D. Young, M. Wehner, D. Newman, and R. Nagpal, Bio-inspired design of soft robotic assistive devices: The interface of physics, biology, and behavior, Ecological Psychology, 24(4), 2012, 300–327.
  29. [29] D. Marculescu, R. Marculescu, N.H. Zamora, P. StanleyMarbell, P.K. Khosla, S. Park, S. Jayaraman, S. Jung, C. Lauterbach, W. Weber, T. Kirstein, D. Cottet, J. Grzyb, G. Troster, M. Jones, T. Martin, and Z. Nakad, Electronic textiles: A platform for pervasive computing, Proceedings of the IEEE, 91(12), 2003, 1995–2018.
  30. [30] D. Kim, Y. Kim, J. Wu, Z. Liu, J. Song, H. Kim, Y. Huang, K. Hwang, and J. Rogers, Ultrathin silicon circuits with strain-isolation layers and mesh layouts for high-performance electronics on fabric, vinyl, leather, and paper, Advanced Materials, 21(36), 2009, 3703–3707.
  31. [31] J.A. Rogers and Y. Huang, A curvy, stretchy future for electronics, Proceedings of the National Academy of Sciences of the United States of America, 106(27), 2009, 10875–10876.
  32. [32] R.K. Kramer, M. Carmel, and J.W. Robert, Wearable tactile keypad with stretchable artificial skin, IEEE International Conf. on Robotics and Automation, Shanghai, China, 2011, 1103–1107.
  33. [33] Y.L. Park, B.R. Chen, D. Young, L. Stirling, R.J. Wood, E.C. Goldfield, and R. Nagpal, Design and control of a bioinspired soft wearable robotic device for ankle-foot rehabilitation, Bioinspiration & Biomimetics, 9(1), 2014, 016007.
  34. [34] Y. Mengü¸c, Y.L. Park, H. Pei, D. Vogt, P.M. Aubin, E. Winchell, L. Fluke, L. Stirling, R.J. Wood, and C.J. Walsh, Wearable soft sensing suit for human gait measurement, The International Journal of Robotics Research, 33(14), 2014, 0278364914543793.
  35. [35] P. Polygerinos, Z. Wang, K.C. Galloway, R.J. Wood, and C.J. Walsh, Soft robotic glove for combined assistance and at-home rehabilitation, Robotics and Autonomous Systems, 73, 2015, 135–143.
  36. [36] T. Barry, H.T. Lin, A. Baryshyan, G. Leisk, and D.L. Kaplan, Towards a biomorphic soft robot: design constraints and solutions, 4th IEEE RAS & EMBS Biomedical Robotics and Biomechatronics (BioRob), Rome, Italy, 2012, 599–605.
  37. [37] D. Hur, B.D. Matthews, A. Mammoto, M. Montoya-Zavala, and H.Y. Hsin, Reconstituting organ-level lung functions on a chip, Science, 328(5986), 2010, 1662–1668.
  38. [38] J.C. Nawroth, H. Lee, A.W. Feinberg, C.M. Rippinger, M.L. McCain, A. Grosberg, J.O. Dabiri, and K.K. Parker, A tissue-engineered jellyfish with biomimetic propulsion, Nature Biotechnology, 30(8), 2012, 792–797.
  39. [39] D.H. Kim, J. Viventi, J.J. Amsden, J. Xiao, L. Vigeland, Y.S. Kim, J.A. Panilaitis, E.S. Frechette, D. Contreras, and D.L. Kaplan, Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics, Nature Materials, 9(6), 511–517.
  40. [40] K. Numata and D.L. Kaplan, Silk-based delivery systems of bioactive molecules, Advanced Drug Delivery Reviews, 62(15), 2010, 1497–1508.
  41. [41] S. Bhumiratana, W.L. Grayson, A. Castaneda, D.N. Rockwood, E.S. Gil, D.L. Kaplan, and G. Vunjak-Novakovic, Nucleation and growth of mineralized bone matrix on silk-hydroxyapatite composite scaffolds, Biomaterials, 32(11), 2011, 2812–2820.
  42. [42] V. Chan, K. Park, M.B. Collens, H. Kong, T.A. Saif, and R. Bashir, Development of miniaturized walking biological machines, Scientific Reports, 2, 2012, 857: 1–8.
  43. [43] X. Liang, Y. Sun, and H. Ren, A flexible fabrication approach toward the shape engineering of microscale soft pneumatic actuators, IEEE Robotics and Automation Letters, 2(1), 2017, 165–170.
  44. [44] H. Banerjee, Frequency dependent shape transitions in microconfined biological cells, International Journal of Advanced Information Science and Technology (IJAIST), 5(4), 2016, 64–71.
  45. [45] S.A. Morin, R.F. Shepherd, S.W. Kwok, A.A. Strokes, A. Nemiroski, and G.M. Whitesides, Camouflage and display for soft machines, Science, 337(6096), 2012, 828–832.
  46. [46] R.F. Shepherd, F. Illievski, W. Chi, S.A. Morin, A.A. Strokes, A.D. Mazzeo, X. Chen, M. Wang, and G.M. Whitesides, Multigait soft robot, Proceedings of the National Academy of Sciences, 108(51), 2011, 20400–20403.
  47. [47] F. Ilievski, A.D. Mazzeo, R.F. Shepherd, X. Chen, and G.M. Whitesides, Soft robotics for chemists, Angewandte Chemie, 50(8), 2011, 1890–1895.
  48. [48] R.V. Martinez, J.L. Branch, C.R. Fish, L. Jin, R.F. Shepherd, R. Nunes, Z. Suo, and G.M. Whitesides, Robotic tentacles with three-dimensional mobility based on flexible elastomers, Advanced Materials, 25(2), 2013, 205–212.
  49. [49] K.J. Cho, J.S. Koh, S. Kim, W.S. Chu, Y. Hong, and S.H. Ahn, Review of manufacturing processes for soft biomimetic robots, International Journal of Precision Engineering and Manufacturing, 10(3), 2009, 171–181.
  50. [50] L. Hod and M. Kurman, Fabricated: The new world of 3D printing (John Wiley & Sons, 2013).
  51. [51] J.G. Cham, S.A. Bailey, J.E. Clark, R.J. Full, and M.R. Cutkosky, Fast and robust: Hexapedal robots via shape deposition manufacturing, International Journal of Robotics Research, 21(10–11), 2002, 869–882.
  52. [52] Y. Xia and G.M. Whitesides, Soft lithography, Annual Review of Materials Science, 28(1), 1998, 153–184.
  53. [53] S.P. Lacour, S. Wagner, Z. Huang, and Z. Suo, Stretchable gold conductors on elastomeric substrates, Applied Physics Letter, 82(15), 2003, 2404–2406.
  54. [54] J.A. Rogers, T. Someya, and Y. Huang, Materials and mechanics for stretchable electronics, Science, 327(5973), 2010, 1603–1607.
  55. [55] S. Cheng, Z. Wu, Microfluidic electronics, Lab on a Chip, 12(16), 2012, 2782–2791.
  56. [56] M.R. Cutkosky and S. Kim, Design and fabrication of multi-material structures for bioinspired robots, Philosophical Transactions of the Royal Society, 367(1894), 2009, 1799–1813.
  57. [57] E. Malone, M. Berry, and H. Lipson, Freeform fabrication and characterization of Zn-air batteries, Rapid Prototyping Journal, 14(3), 2008, 128–140.
  58. [58] R.J. Wood, The first biologically inspired at-scale robotic insect, IEEE Transactions on Robotics, 24(2), 2008, 341–347.
  59. [59] M. Cianchetti, V. Mattoli, B. Mazzolai, C. Laschi, and P. Dario, A new design methodology of electrostrictive actuators for bioinspired robotics, Sensors and Actuators B: Chemical, 142(1), 2009, 288–297.
  60. [60] C. Laschi, B. Mazzolai, V. Mattoli, M. Cianchetti, and P. Dario, Design of a biomimetic robotic octopus arm, Bioinspiration & Biomimetics, 4(1), 2009, 015006.
  61. [61] S. Kim, E. Hawkes, K. Cho, M. Jolda, J. Foley, and R. Wood, Micro artificial muscle fiber using NiTi spring for soft robotics, Intelligent Robots and Systems, IROS, IEEE/RSJ International Conf., October 11–15, 2009, St. Louis, USA, 2009, 2228–2234.
  62. [62] E.T. Roche, R. Wohlfarth, J.T. Overvelde, N.V. Vasilyev, F.A. Pigula, D.J. Mooney, K. Bertoldi, and C.J. Walsh, A bioinspired soft actuated material, Advanced Materials, 26(8), 2014, 1200–1206.
  63. [63] F. Daerden and L. Dirk, The concept and design of pleated pneumatic artificial muscles, International Journal of Fluid Power, 2(3), 2001, 41–50.
  64. [64] K. Suzumori, I. Shoichi, and T. Hiroshisa, Applying a flexible microactuator to robotic mechanisms, Control Systems, IEEE, 12(1), 1992, 21–27.
  65. [65] L. Hod, Challenges and opportunities for design, simulation, and fabrication of soft robots, Soft Robotics, 1(1), 2014, 21–27.
  66. [66] I. Fumiya and C. Laschi, Soft robotics: Challenges and perspectives, Procedia Computer Science, 7, 2011, 99–102.
  67. [67] R.J. Webster and B.A. Jones, Design and kinematic modeling of constant curvature continuum robots: A review, The International Journal of Robotics Research, 29, 2010, 1661–1683.
  68. [68] I.A. Gravagne, C.D. Rahn, and I.D. Walker, Large deflection dynamics and control for planar continuum robots, IEEE/ASME Transactions on Mechatronics, 8(2), 2003, 299–307.
  69. [69] R. Federico, M. Giorelli, M. Calisti, M. Cianchetti, and C. Laschi, Dynamic model of a multibending soft robot arm driven by cables, IEEE Transactions on Robotics, 30(5), 2014, 1109–1122.
  70. [70] K.C. Galloway, K.P. Becker, B. Phillips, J. Kirby, S. Licht, D. Tchernov, R.J. Wood, and D.F. Gruber, Soft robotic grippers for biological sampling on deep reefs, Soft Robotics, 3(1), 2016, 23–33.
  71. [71] H. Ren, X. Gu, and K.L. Tan, Human-compliant body-attached soft robots towards automatic cooperative ultrasound imaging, IEEE 20th International Conf. on Computer Supported Cooperative Work in Design (CSCWD), Nanchang, China, 2016, 653–658.
  72. [72] J. Morrow, H.-S. Shin, J. Torrey, R. Larkins, S. Dang, C.P. Grafflin, Y.-L. Park, and D. Berenson, Improving soft pneumatic actuator fingers through integration of soft sensors, position and force control, and rigid fingernails, IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 2016, 5024–5031.
  73. [73] S. Yi, S. Song, X. Liang, and H. Ren, A miniature soft robotic manipulator based on novel fabrication methods, IEEE Robotics and Automation Letters, 1(2), 2016, 617–623.
  74. [74] J. Paek, I. Cho, and J. Kim. Microrobotic tentacles with spiral bending capability based on shape-engineered elastomeric microtubes, Scientific Reports 5, 2015, 10768.
  75. [75] E. Rogers, P. Polygerinos, C. Walsh, and E. Goldfield, Smart and connected actuated mobile and sensing suit to encourage motion in developmentally delayed infants, Journal of Medical Devices, 9(3), 2015, 030914.
  76. [76] R.T. Ellen, M.A. Horvath, A. Alazmani, K.C. Galloway, N.V. Vasilyev, D.J. Mooney, F.A. Pigula, and C.J.Walsh, Design and fabrication of a soft robotic direct cardiac compression device, ASME 2015 International Design Engineering Technical Conf. and Computers and Information in Engineering Conf., Massachusetts, USA, 2015, V05AT08A042-052.
  77. [77] S. Shruthi, Y. Liu, and R.C.H. Yeow, Development of a wearable electroencephalographic device for anxiety monitoring, Journal of Medical Devices, 9(3), 2015, 030917.
  78. [78] A.D. Marchese and D. Rus, Design, kinematics, and control of a soft spatial fluidic elastomer manipulator, The International Journal of Robotics Research, 35(7), 2016, 0278364915587925.
  79. [79] S. Yi, C.M. Lim, H.H. Tan, and H. Ren, Soft oral interventional rehabilitation robot based on low-profile soft pneumatic actuator, IEEE International Conf. on Robotics and Automation (ICRA), Seattle, Washington, 2015, 2907–2912.
  80. [80] B.C.M. Murray, X. An, S.S. Robinson, I.M. Meerbeek, K.W. O’Brien, H. Zhao, and R.F. Shepherd, Poroelastic foams for simple fabrication of complex soft robots, Advanced Materials, 27(41), 2015, 6334–6340.
  81. [81] L. Ming, W. Tao, F. Chen, T.K. Khuu, S. Ozel, and C.D. Onal, Design improvements and dynamic characterization on fluidic elastomer actuators for a soft robotic snake, IEEE International Conf. on Technologies for Practical Robot Applications (TePRA), Woburn, Massachusetts, 2014, 1–6.
  82. [82] A.D. Marchese, C.D. Onal, and D. Rus, Autonomous soft robotic fish capable of escape maneuvers using fluidic elastomer actuators, Soft Robotics, 1(1), 2014, 75–87.
  83. [83] N.G. Cheng, A. Gopinath, L. Wang, K. Iagnemma, and A.E. Hosoi, Thermally tunable, self-healing composites for soft robotic applications, Macromolecular Materials and Engineering, 299(11), 2014, 1279–1284.
  84. [84] E. Steltz, A. Mozeika, J. Rembisz, N. Corson, and H.M. Jaeger, Jamming as an enabling technology for soft robotics, SPIE Smart Structures and Materials Nondestructive Evaluation and Health Monitoring, San Diego, California, United States, 2010, 764225–764225.
  85. [85] ABI Research, Consumer and personal electronics (New York: Allied Business Intelligence, Inc., 2013).
  86. [86] Bank of America Merrill Lynch Research, Thematic Investing, Robot Revolution-Global Robot & AI Primer, Equity, 3rd November, 2015.
  87. [87] T. Barry and G. Whitesides, An interview with George Whitesides, Soft Robotics, 1(4), 2014, 233–235.

Important Links:

Go Back