Gokmen Ascioglu and Yavuz Senol


  1. [1] S.K. Banala, S.K. Agrawal, and J.P. Scholz, Active Leg Ex-oskeleton (ALEX) for gait rehabilitation of motor-impaired patients, Proc. of the 2007 IEEE 10th Int. Conf. on RehabilitationRobotics, 2007, 401–407, DOI: 10.1109/ICORR.2007.4428456.
  2. [2] E. Swinnen, S. Duerinck, J.P. Baeyens, R. Meeusen, andE. Kerckhofs, Effectiveness of robot-assisted gait training inpersons with spinal cord injury: A systematic review, Journal ofRehabilitation Medicine, 42(6), 2010, 520–526, DOI: 10.2340/16501977-0538.
  3. [3] H. Kawamoto, S. Lee, S. Kanbe, and Y. Sankai, Power assistmethod for HAL-3 using EMG-based feedback controller, Proc.of 2003 IEEE Int. Conf. on Systems, Man and Cybernetics, 2,2003, 1648–1653, DOI: 10.1109/ICSMC.2003.1244649.
  4. [4] D. Aoyagi, W.E. Ichinose, S.J. Harkema, D.J. Reinkensmeyer, and J.E. Bobrow, An assistive robotic device thatcan synchronize to the pelvic motion during human gaittraining, Proceedings of the 2005 IEEE 9th InternationalConference on Rehabilitation Robotics, 2005, 565–568,DOI:10.1109/ICORR.2005.1502026.
  5. [5] M.A.M. Zahir and S. Yamamoto, Design and evaluation ofthe AIRGAIT exoskeleton: Leg orthosis control for assistivegait rehabilitation, Journal of Robotics, 2013, 2013, 1–20,DOI: 10.1155/2013/535106.
  6. [6] B. Koopman, E.H. van Asseldonk, H. van der Kooij, W. vanDijk, and R. Ronsse, Rendering potential wearable robotdesigns with the LOPES gait trainer, Proceedings of 2011IEEE International Conference on Rehabilitation Robotics,2011, 1–6, DOI: 10.1109/ICORR.2011.5975448
  7. [7] M. Bortole, A. Venkatakrishnan, F. Zhu, et al., The H2robotic exoskeleton for gait rehabilitation after stroke: Earlyfindings from a clinical study, Journal of NeuroEngineering andRehabilitation, 2015, 1–14. DOI: 10.1186/s12984-015-0048-y.
  8. [8] Australian Government, Operational Exoskeleton (OX),Department of Defence Science and Technology, Melbourne,Australia, 2016.
  9. [9] N. Li, L. Yan, H. Qian, H. Wu, J. Wu, and S. Men, Reviewon lower extremity exoskeleton robot, The Open Automationand Control Systems Journal, 7, 2015, 441–453, DOI: 10.2174/1874444301507010441.
  10. [10] C.J. Walsh, K. Endo, and H. Herr, A quasi-passive leg exoskeleton for load-carrying augmentation, International Journal of Humanoid Robotics, 4(3), 2007, 487–506, DOI: 10.1142/S0219843607001126.
  11. [11] A.J. Young and D.P. Ferris, State-of-the-art and future directions for lower limb robotic exoskeletons, IEEE Transactions onNeural Systems and Rehabilitation Engineering, 25(2), 2016,1–13. DOI: 10.1109/TNSRE.2016.2521160.
  12. [12] D.M. Djuric-Jovicic, N.S. Jovicic, and D.B. Popovic, Kinematics of gait: New method for angle estimation based onaccelerometers, Sensors, 11, 2011, 10571–10585, DOI: 10.3390/s111110571.
  13. [13] W. Tao, T. Liu, R. Zheng, and H. Feng, Gait analysisusing wearable sensors, Sensors, 12(2), 2012, 2255–2283.DOI: 10.3390/s120202255.
  14. [14] J. Lee and G. Lee, Gait angle prediction for lower limb orthoticsand prostheses using an EMG signal and neural networks,International Journal of Control, Automation, and Systems,3(2), 2005, 152–158.
  15. [15] F. Alonge, E. Cucco, F. D’Ippolito, and A. Pulizzotto, Theuse of accelerometers and gyroscopes to estimate hip andknee angles on gait analysis, Sensors, 14, 2014, 8430–8446,DOI: 10.3390/s140508430.
  16. [16] D.B. Fineberg, P. Asselin, N.Y. Harel, et al., Vertical groundreaction force-based analysis of powered exoskeleton-assistedwalking in persons with motor-complete paraplegia, Journalof Spinal Cord Medicine, 36(4), 2013, 313–321.
  17. [17] M.A. Gomes, G.L. Silveira, and A.A.G. Siqueira, Gait-patternadaptation algorithms based on neural network for lower limbsactive orthoses, Advanced Robotics, 25(15), 2011, 1903–1925.
  18. [18] S. Mefoued, M.E. Daachi, B. Daachi, S. Mohammed, andY. Amirat, A robust adaptive neural controller to drive aknee joint actuated orthosis, Proc. of the 2012 IEEE Int.Conf. on Robotics and Biomimetics, Guangzhou, China, 2012,1656–1661.
  19. [19] F. Wang, T. Yin, C. Lei, Y. Zhang, Y. Wang, and J. Liu,Prediction of lower limb joint angle using sEMG based onGA-GRNN, The 5th Annual IEEE Int. Conf. on Cyber Technology in Automation, Control and Intelligent Systems, Shenyang,China, 2015, 1894–1899.
  20. [20] L. Tong, F. Zhang, Z.G. Hou, W. Wang, and L. Peng,BP-AR based human joint angle estimation using multi-channelSEMG, International Journal of Robotics and Automation,30(3), 2015, 227–237.
  21. [21] Sparkfun (n.d.), Force sensitive resistor – square, (retrieved Jan. 31, 2017).
  22. [22] T. Liu, Y. Inoue, and K. Shibata, A wearable ground reactionforce sensor system and its application to the measurement ofextrinsic gait variability, Sensors, 10(11), 2010, 10240–10255,DOI: 10.3390/s101110240.
  23. [23] N.K. Rana, Application of force sensing resistor in designof pressure scanning system for plantar pressure measurement, 2009 Second Int. Conf. on Computer and ElectricalEngineering, Dubai, United Arab Emirates, 2009, 678–685,DOI: 10.1109/ICCEE.2009.234.
  24. [24] A. Razak, A. Zayegh, R.K. Begg, and Y. Wahab, Foot plantarpressure measurement system: A review, Sensors, 12, 2012,9884–9912, DOI: 10.3390/s120709884.
  25. [25] M. Whittle, Gait analysis: An introduction (China:Butterworth-Heinemann, 2012).
  26. [26] M. Hagan, H.B. Demuth, O. De Jess, and M. Beale, Neuralnetwork design (Colorado, USA: Martin Hagan, 2014).
  27. [27] S. Haykin, Neural networks: A comprehensive foundation(Delhi, India: Pearson Education, 2005).
  28. [28] J. Jin, M. Li, and L. Jin, Data normalization to acceler-ate training for linear neural net to predict tropical cyclonetracks, Mathematical Problems in Engineering, 2015, 2015, 1–8,DOI: 10.1155/2015/931629.
  29. [29] O. Celik, A. Teke, and H.B. Yildirim, The optimized artificialneural network model with Levenberg–Marquardt algorithmfor global solar radiation estimation in Eastern MediterraneanRegion of Turkey, Journal of Cleaner Production, 116, 2016,1–12.

Important Links:

Go Back