ADAPTIVE ROBUST CONTROL FOR ACTIVE SUSPENSION SYSTEM USING T–S FUZZY MODEL APPROACH, 46-54.

Chenyu Zhou, Xuan Zhao, and Qiang Yu

References

  1. [1] H. Li, H. Liu, H. Gao, and P. Shi, Reliable fuzzy control for active suspension systems with actuator delay and fault, IEEE Transactions on Fuzzy Systems, 20(2), 2012, 342–357.
  2. [2] M. Yamashita, K. Fujimori, K. Hayakawa, and H. Kimura, Application of H∞ control to active suspension systems, Automatica, 30(11), 1994, 1717–1729.
  3. [3] W. Sun, H. Gao, and K. Okyay, Adaptive backstepping control for active suspension systems with hard constraints, IEEE/ASME Transactions on Mechatronics, 18(3), 2013, 1072–1079.
  4. [4] W. Sun, H. Pan, and H. Gao, Filter-based adaptive vibration control for active vehicle suspensions with electro-hydraulic actuators, IEEE Transactions on Vehicular Technology, 65(6), 2016, 4619–4626.
  5. [5] N. Yagiz and Y. Hacioglu, Backstepping control of a vehicle with active suspensions, Control Engineering Practice, 16(12), 2008, 1457–1467.
  6. [6] H. Du and N. Zhang, Static output feedback control for electrohydraulic active suspensions via T–S fuzzy model approach, Journal of Dynamic Systems, Measurement, and Control, 131(5), 2009, 051004.
  7. [7] S. Chantranuwathana and H. Peng, Adaptive robust force control for vehicle active suspensions, International Journal of Adaptive Control and Signal Processing, 18(2), 2004, 83–102.
  8. [8] W. Sun, H. Pan, Y. Zhang, and H. Gao, Multi-objective control for uncertain nonlinear active suspension systems, Mechatronics, 24(4), 2014, 318–327.
  9. [9] B. Yao and M. Tomizuka, Adaptive robust control of MIMO nonlinear systems in semi-strict feedback forms, Automatica, 37(9), 2001, 1305–1321.
  10. [10] W. Sun, Z. Zhao, and H. Gao, Saturated adaptive robust control for active suspension systems, IEEE Transactions on Industrial Electronics, 60(9), 2013, 3889–3896.
  11. [11] J. Lin and K. Ioannis, Nonlinear design of active suspensions, Control Systems, 17(3), 1997, 45–59.
  12. [12] W. Sun, H. Gao, and B. Yao, Adaptive robust vibration control of full-car active suspensions with electrohydraulic actuators, IEEE Transactions on Control Systems Technology, 21(6), 2013, 2417–2422.
  13. [13] J. Meng, Q. Chen, and R. He, Research on optimal control for the vehicle suspension based on the simulated annealing algorithm, Journal of Applied Mathematics, 2014(5), 2014, 1–5.
  14. [14] H. Chen and K. Guo, Constrained H∞ control of active suspensions: An LMI approach, IEEE Transactions on Control Systems Technology, 13(3), 2005, 412–421.
  15. [15] F. D’Amato and D. Viassol, Fuzzy control for active suspensions, Mechatronics, 10(8), 2000, 897–920.
  16. [16] I. Fialho and G. Balas, Road adaptive active suspension design using linear parameter-varying gain-scheduling, IEEE Transactions on Control Systems Technology, 10(1), 2002, 43–54.
  17. [17] D. Hrovat, Survey of advanced suspension developments and related optimal control applications , Automatica, 33(10), 1997, 1781–1817.
  18. [18] Y. Jiang and Z. Jiang, Computational adaptive optimal control for continuous-time linear systems with completely unknown dynamics, Automatica, 48(10), 2012, 2699–2704.
  19. [19] H. Li, J. Yu, C. Hilton, and H. Liu, Adaptive sliding-mode control for nonlinear active suspension vehicle systems using T– S fuzzy approach, IEEE Transactions on Industrial Electronics, 60(8), 2013, 3328–3338.
  20. [20] M. Sirouspour and S. Salcudean, On the nonlinear control of hydraulic servo-systems, Proc. ICRA ’00 IEEE Int. Conf. on Robotics and Automation, San Francisco, CA, 2000, 1276–1282.
  21. [21] S. Gao, H. Dong, Y. Chen, B. Ning, et al., Adaptive and robust automatic train control system with input saturation, Control and Intelligent System, 41(2), 2013, 103–111.
  22. [22] C. Kaddissi, J. Kenne, and M. Saad, Drive by wire control of an electro-hydraulic active suspension a backstepping approach. Proc. 2005 IEEE Conf. on Control Applications, Toronto, ONT, 2005, 1581–1587.
  23. [23] S. Huang and W. Lin, Adaptive fuzzy controller with sliding surface for vehicle suspension control, IEEE Transactions on Fuzzy Systems, 11(4), 2003, 550–559.
  24. [24] Y. Lu and J. Chen, A self-organizing fuzzy sliding-mode controller design for a class of nonlinear servo systems. IEEE Transactions on Industrial Electronics, 41(5), 1994, 492–502.
  25. [25] H. Du and N. Zhang, Fuzzy control for nonlinear uncertain electrohydraulic active suspensions with input constraint, IEEE Transactions on Fuzzy Systems, 17(2), 2009, 343–356.
  26. [26] H. Gao, J. Wu, and P. Shi, Robust sampled-data control with stochastic sampling, Automatica, 45(7), 2009, 1729–1736.
  27. [27] D. Lee, J. Park, Y. Joo, K. Lin, et al., Robust H∞ control for uncertain nonlinear active magnetic bearing systems via Takagi–Sugeno fuzzy models, International Journal of Control, Automation and Systems, 8(3), 2010, 636–646.
  28. [28] H. Li, X. Jin, H. Lam, and P. Shi, Fuzzy sampled-data control for uncertain vehicle suspension systems, IEEE Transaction on Cybernetics, 44(7), 2014, 1111–1126.

Important Links:

Go Back