MULTI-OBJECTIVE GAIN-SCHEDULED H ∞ CONTROL OF AN OFFSHORE WIND TURBINE WITH TENSION LEG PLATFORM, 64-71.

Farzaneh Haghjoo, Ehsan Azadi Yazdi, and Mohammad Eghtesad

References

  1. [1] J.M. Jonkman and M. Buhl Jr., FAST user’s guide, national renewable energy laboratory, No. NREL/EL-500-38230, Golden, CO, 2005.
  2. [2] J.R. Homer and R. Nagamune, Control-oriented physics-based models for floating offshore wind turbines, American Control Conference (ACC) 2015, 2015, 3696–3701.
  3. [3] M. Blackman, R. Sharma, M. Nadarajah, and G. Athanasius, Model-based control of utility-scale wind turbines, Control & Intelligent Systems, 45, 2017, 1–9.
  4. [4] G. Betti, M. Farina, G.A. Guagliardi, A. Marzorati, and R. Scattolini, Development of a control-oriented model of floating wind turbines, Control Systems Technology, IEEE Transactions on, 22, 2014, 69–82.
  5. [5] F. Haghjoo, M. Eghtesad, and E.A. Yazdi, Dynamic modeling and H∞ control of offshore wind turbines, IJEM-International Journal of Engineering and Manufacturing, 7, 2017, 9–10.
  6. [6] A.R.W.S. Cabral and R. Nagamune, Floating-body motion control by coupling an oscillating mass for wind turbine applications, Electrical and Computer Engineering (CCECE), 2016 IEEE Canadian Conference on, 2016, 1–4.
  7. [7] P.M. Pardalos, S. Rebennack, M.V. Pereira, N.A. Iliadis, and V. Pappu, Handbook of wind power systems (Berlin: Springer, 2014).
  8. [8] M. Koumir, A.E. Bakri, and I. Boumhidi, Integral sliding mode control based on extreme learning machine for a wind turbine, Control and Intelligent Systems, 45, 2017, 117–124.
  9. [9] J. Boumhidi, N. Farhane, and I. Boumhidi, Neural network sliding mode controller for a variable speed wind trbine Elmahjoub Boufounas, Control and Intelligent Systems, 41, 2013, 100–109.
  10. [10] J.E. Withee, Fully coupled dynamic analysis of a floating wind turbine system, DTIC Document, 2004.
  11. [11] T.J. Larsen and T.D. Hanson, A method to avoid negative damped low frequent tower vibrations for a floating, pitch controlled wind turbine, Journal of Physics: Conference Series, 2007, 012073.
  12. [12] J.M. Jonkman, Dynamics modeling and loads analysis of an offshore floating wind turbine (University of Colorado at Boulder: ProQuest, 2007).
  13. [13] A.D. Wright, Modern control design for flexible wind turbines (Golden, CO: National Renewable Energy Laboratory , 2004).
  14. [14] H. Jafarnejadsani and J. Pieper, Gain-scheduled-optimal control of variable-speed-variable-pitch wind turbines, Control Systems Technology, IEEE Transactions on, 23, 2015, 372–379.
  15. [15] H. Namik, K. Stol, and J. Jonkman, State-space control of tower motion for deepwater floating offshore wind turbines, Proc. AIAA/ASME Wind Energy Symp., Reno, NV, 2008.
  16. [16] E.A. Bossanyi, P.A. Fleming, and A.D. Wright, Validation of individual pitch control by field tests on two-and three-bladed wind turbines, Control Systems Technology, IEEE Transactions on, 21, 2013, 1067–1078.
  17. [17] H. Namik and K. Stol, Individual blade pitch control of floating offshore wind turbines, Wind Energy, 13, 2010, 74–85.
  18. [18] H. Namik and K. Stol, Performance analysis of individual blade pitch control of offshore wind turbines on two floating platforms, Mechatronics, 21, 2011, 691–703.
  19. [19] G. Betti, M. Farina, A. Marzorati, R. Scattolini, and G. Guagliardi, Modeling and control of a floating wind turbine with spar buoy platform, Energy Conference and Exhibition (ENERGYCON), 2012 IEEE International, 2012, 189–194.
  20. [20] B. Bulder, A. Henderson, R. Huijsmans, J. Peeringa, J. Pierik, E. Snijders, et al., Floating offshore wind turbines for shallow waters, EWEC 2003, 2003.
  21. [21] S. Butterfield, W. Musial, J. Jonkman, and P. Sclavounos, Engineering challenges for floating offshore wind turbines (Golden, CO: National Renewable Energy Laboratory (NREL), 2007).
  22. [22] F.G. Nielsen, T.D. Hanson, and B.R. Skaare, Integrated dynamic analysis of floating offshore wind turbines, 25th International Conf. on Offshore Mechanics and Arctic Engineering, 2006, 671–679.
  23. [23] J.F. Manwell, J.G. McGowan, and A.L. Rogers, Wind energy explained: Theory, design and application (New York: John Wiley & Sons, 2010).
  24. [24] B. Boukhezzar and H. Siguerdidjane, Nonlinear control of variable speed wind turbines without wind speed measurement, Decision and Control, 2005 and 2005 European Control Conference. CDC-ECC’05. 44th IEEE Conference on, 2005, 3456–3461.
  25. [25] B.R. Munson, A.P. Rothmayer, T.H. Okiishi, and W.W. Huebsch, Fundamentals of fluid mechanics (New York: John Wiley & Sons, 2017).
  26. [26] F.D. Bianchi, H. De Battista, and R.J. Mantz, Wind turbine control systems: Principles, modelling and gain scheduling design (London: Springer Science & Business Media, 2006).
  27. [27] P.M. Pardalos, S. Rebennack, M.V. Pereira, N.A. Iliadis, and V. Pappu, Handbook of wind power systems (Berlin: Springer, 2013).
  28. [28] B.M. Sumer, Hydrodynamics around cylindrical structures, Vol. 26 (London: World Scientific, 2006).
  29. [29] F. Bruzelius, LPV-based gain scheduling and H∞ – LMI approach (Gothenburg, Sweden: Chalmers University of Technology, 2002).
  30. [30] G. Naus, Gain scheduling robust design and automated tuning of automotive controllers (Eindhoven, Netherlands: TU Eindhoven, 2009).

Important Links:

Go Back