Dong Ren and Alex Martynenko


  1. [1] R.S. Freeland and L.O. Odhiambo, Investigation of a fuzzy-neural network application in classification of soils usingground-penetrating radar imagery, Journal of ChemicalPhysics, 20(1), 2004, 109–117.
  2. [2] F.J. Orellana, J. Del Sagrado, and I.M. Del ´Aguila, SAIFA:A web-based system for integrated production of olive cultivation, Computers and Electronics in Agriculture, 78(2), 2011,231–237.
  3. [3] S.K. Mathanker, P.R. Weckler, T.J. Bowser, et al., Adaboostclassifiers for pecan defect classification, Computers and Eletronics in Agriculture, 77(1), 2011, 60–68.
  4. [4] E. Rodero, A. Gonz´alez, M. Luque, et al., Classificationof Spanish autochthonous bovine breeds morphometric studyusing classical and heuristic techniques, Livestock Science,143(2–3), 2012, 226–232.
  5. [5] B.D. Wardlow, S.L. Egbert, and J.H. Kastens, Analysis oftime-series MODIS 250 m vegetation index data for cropclassification in the U.S. central great plains, Remote Sensingof Environment, 108(3), 2007, 290–310.
  6. [6] I.W. Nuarsa, F. Nishio, C. Hongo, and I.G. Mahardika, Usingvariance analysis of multitemporal MODIS images for rice fieldmapping in Bali province, Indonesia, International Journal ofRemote Sensing, 33(17), 2012, 5402–5417.
  7. [7] C. Gomez, R.A.V. Rossel, and A.B. McBratney, Soil organiccarbon prediction by hyperspectral remote sensing and fieldvis–NIR spectroscopy: An Australian case study, Geoderma,146(3–4), 2008, 403–411.
  8. [8] J. Franke and G. Menz, Multi-temporal wheat disease detectionby multi-spectral remote sensing, Precision Agriculture, 8(3),2007, 161–172.
  9. [9] Z. Dan, X. Wei, S. Sun, and G. Zhou, An improved destripingmethod for remote sensing images, International Journal ofRobotics and Automation, 33(1), 2018, 104–110.
  10. [10] A.C. Dan, A. Ursu, and F.C. Mihai, The analysis of agriculturallandscape change using GIS techniques. Case study: Podoleni,Romania, MPRA Paper, 54(1), 2011, 73–76.
  11. [11] A.K. Maji, D.C. Nayak, N.D. Krishna, et al., Soil informationsystem of Arunachal Pradesh in a GIS environment for land useplanning, International Journal of Applied Earth Observationand Geoinformation, 3(1), 2001, 69–77.
  12. [12] X. Ding, B. Zhou, J. Xu, et al., Risk evaluation of availablephosphorus loss in agricultural land based on remote sensingand GIS, International Society for Optics and Photonics, 8203,2010, 525–528.
  13. [13] T.S. Tan, K.K. Phoon, G.R. Dasari, and J. Kunapo, Development of a web-GIS based geotechnical information system, Journal of Computing in Civil Engineering, 19(3), 2005,323–327.
  14. [14] K. Ariyama, Y. Aoyama, A. Mochizuki, et al., Determination ofthe geographic origin of onions between three main productionareas in Japan and other countries by mineral composition,Journal of Agricultural and Food Chemistry, 55(2), 2007,347–354.
  15. [15] D. Ren, C. Zhang, S. Ren, et al., An improved approach ofcars for Longjing tea detection based on near-infrared spectra,International Journal of Robotics and Automation, 33(1), 2018,97–103.
  16. [16] N. Kondo, Y. Yagi, and M. Monta, Development of chrysanthemum cutting providing system for cutting sticking robot,Journal of the Japanese Society of Agricultural Machinery,440, 1999, 383–388.
  17. [17] N. Kondo and K.C. Ting, Robotics for bio-production systems(St. Joseph, MI: ASAE Publisher, 1998).
  18. [18] M. Iida, K. Furube, K. Namikawa, and M. Umeda, Developmentof watermelon harvesting gripper, Journal of the JapaneseSociety of Agricultural Machinery, 58, 2010, 19–26.
  19. [19] V. Subramanian, T.F. Burks, and A.A. Arroyo, Developmentof machine vision and laser radar based autonomous vehicleguidance systems for citrus grove navigation, Computers andElectronics in Agriculture, 53(2), 2006, 130–143.
  20. [20] M.S. Kim, K.I. Kim, and K.H. Ryu, Designing and developingan automatic robot system for the itemized loading of appleboxes at the Agriculture Products Processing Center, KoreanInstitute of Information Scientists and Engineers, 21(11), 2015,689–698.
  21. [21] B. Hao and Z. Yan, Recovery path planning for an agriculturalmobile robot by Dubins-RRT algorithm, International Journalof Robotics and Automation, 33(2), 2018, 202–207.
  22. [22] L. Wang, Y. Liao, and Q. Liao, Design and experiment ofremote control precision planter for Chinese cabbage vegetable,International Journal of Robotics and Automation, 33(2), 2018,208–214.
  23. [23] D. Kolokotsa, G. Saridakis, K. Dalamagkidis, et al., Development of an intelligent indoor environment and energymanagement system for greenhouses, Energy Conversion andManagement, 51(1), 2010, 155–168.
  24. [24] D.S. Domingues, H.W. Takahashi, C.A.P. Camara, and S.L.Nixdorf, Automated system developed to control pH andconcentration of nutrient solution evaluated in hydroponiclettuce production, Computers and Electronics in Agriculture,84(2), 2012, 53–61.
  25. [25] L. Kevac, M. Filipovic, and A. Rakic, Contribution to modelling the cable-suspended parallel robot intended for appli-cation in greenhouses, International Journal of Robotics andAutomation, 33(2), 2018, 194–201.
  26. [26] F.J. Ferr´andez-Pastor, J.M. Garc´ıa-Chamizo, M. Nieto-Hidalgo, and J. Mora-Pascual, Developing ubiquitous sensornetwork platform using internet of things: Application inprecision agriculture, Sensors, 16(7), 2016, 1141.
  27. [27] S. Yao, C. Feng, Y. He, and S. Zhu, Application of IOT inagriculture, Journal of Agricultural Mechanization Research,33(7), 2011, 190–193.
  28. [28] C. Ma, J. Li, and D. Wang, Optimal evaluation index systemand benefit evaluation model for agricultural informatizationin Beijing, International Journal of Robotics and Automation,33(1), 2018, 89–96.

Important Links:

Go Back