Create New Account
Login
Search or Buy Articles
Browse Journals
Browse Proceedings
Subscriptions
Submit your Paper
Submission Information
Journal Review
Recommend to Your Library
Call for Papers
DYNAMIC ANALYSIS AND FPGA IMPLEMENTATION OF FRACTIONAL-ORDER MODEL OF A 5D HOMOPOLAR DISC DYNAMO
Zhouchao Wei,∗ Yingying Li,∗ and Karthikeyan Rajagopal∗∗
References
[1] G.A. Leonov and N.V. Kuznetsov, Hidden attractors in dynam-ical systems. From hidden oscillations in Hilbert-Kolmogorov,Aizerman, and Kalman problems to hidden chaotic attractorsin Chua circuits, International Journal of Bifurcation andChaos, 23, 2013, 1330002.
[2] G.A. Leonov, N.V. Kuznetsov, and T.N. Mokaev, Homoclinicorbits, and self-excited and hidden attractors in a Lorenz-likesystem describing convective ﬂuid motion, European PhysicalJournal Special Topics, 224, 2015, 1421–1458.
[3] G.A. Leonov, N.V. Kuznetsov, and T.N. Mokaev, Homoclinicorbit and hidden attractor in the Lorenz-like system describingthe ﬂuid convection motion in the rotating cavity, Communi-cations in Nonlinear Science and Numerical Simulation, 28,2015, 166–174.
[4] Z.C. Wei, I. Moroz, Z. Wang, J.C. Sprott, and T. Kapitaniak,Dynamics at inﬁnity, degenerate Hopf and zero-Hopf bifurca-tion for Kingni-Jafari system with hidden attractors, Interna-tional Journal of Bifurcation and Chaos, 26, 2016, 1650125.
[5] Z.C. Wei, W. Zhang, Z. Wang, and M.H. Yao, Hidden attractorsand dynamical behaviors in an extended Rikitake system,International Journal of Bifurcation and Chaos, 25, 2015,1550028.
[6] T. Kapitaniak and G.A. Leonov, Multistability: Uncoveringhidden attractors, European Physical Journal Special Topics,224, 2015, 1405–1408.
[7] Z. Wang, A. Akgul, V.T. Pham, and S. Jafari, Chaos-basedapplication of a novel no-equilibrium chaotic system withcoexisting attractors, Nonlinear Dynamics, 89, 2017, 1877–1887.
[8] E. Tlelo-Cuautle, L.G. de la Fraga, V.T. Pham, V. Volos, andS. Jafari, Dynamics, FPGA realization and application of achaotic system with an inﬁnite number of equilibrium points,Nonlinear Dynamics, 89, 2017, 1129–1139.
[9] J.C. Sprott, S. Jafari, A.J.M. Khalaf, and T. Kapitaniak,Megastability: Coexistence of a countable inﬁnity of nestedattractors in a periodically-forced oscillator with spatially-periodic damping, European Physical Journal Special Topics,226, 2017, 1979–1985.
[10] S. Jafari, V.T. Pham, and T. Kapitaniak, Multiscroll chaoticsea obtained from a simple 3D system without equilibrium,International Journal of Bifurcation and Chaos, 26, 2016,1650031.
[11] C.B. Li, W. Hu, J.C. Sprott, and X. Wang, Multistability insymmetric chaotic systems, European Physical Journal SpecialTopics, 224, 2015, 1493–1506.
[12] C.B. Li, J.C. Sprott, and Y. Mei, An inﬁnite 2D lattice ofstrange attractors, Nonlinear Dynamics, 89, 2017, 2629–2639.
[13] B.C. Bao, H. Bao, N. Wang, M. Chen, and Q. Xu, Hidden ex-treme multistability in memristive hyperchaotic system, ChaosSolitons and Fractals, 94, 2017, 102–111.
[14] C.B. Li and J.C. Sprott, An inﬁnite 3D quasiperiodic latticeof chaotic attractors, Physics Letters A, 382, 2018, 581–587.
[15] Z.C. Wei, Dynamical behaviors of a chaotic system with noequilibria, Physics Letters A, 376, 2011, 102–108.
[16] Z.C. Wei, R.R. Wang, and A.P. Liu, A new ﬁnding of theexistence of hidden hyperchaotic attractors with no equilibria,Mathematics and Computers in Simulation, 100, 2014, 13–23.
[17] V.-T. Pham, C. Volos, S. Jafari, Z.C. Wei, and X. Wang, Con-structing a novel no-equilibrium chaotic system, InternationalJournal of Bifurcation and Chaos, 24, 2014, 1450073.
[18] M. Molaie, S. Jafari, J.C. Sprott, and S.M.R.H. Golpayegani,Simple chaotic ﬂows with one stable equilibrium, InternationalJournal of Bifurcation and Chaos, 23, 2013, 1350188.
[19] Z.C. Wei and I. Pehlivan, Chaos, coexisting attractors, andcircuit design of the generalized Sprott C system with onlytwo stable equilibria, Optoelectronics and Advanced Materials-Rapid Communications, 6, 2012, 742–745.
[20] V.-T. Pham, S. Jafari, C. Volos, S. Vaidyanathan, and T.Kapitaniak, A chaotic system with inﬁnite equilibria locatedon a piecewise linear curve, Optik-International Journal forLight and Electron Optics, 127, 2016, 9111–9117.
[21] S. Jafari, J.C. Sprott, and M. Molaie, A simple chaotic ﬂowwith a plane of equilibria, International Journal of Bifurcationand Chaos, 26, 2016, 1650098.
[22] S. Jafari, J.C. Sprott, V.-T. Pham, C. Volos, and C.B. Li,Simple chaotic 3D ﬂows with surfaces of equilibria, NonlinearDynamics, 86, 2016, 1349–1358.
[23] Z.C. Wei, I. Moroz, J.C. Sprott, A. Akgul, and W. Zhang,Hidden hyperchaos and electronic circuit application in a5D self-exciting homopolar disc dynamo, Chaos, 27(3), 2017,033101.
[24] D. Baleanu, K. Diethelm, E. Scalas, and J.J. Trujillo, Fractionalcalculus: Models and numerical methods, World Scientiﬁc,Singapore, 2014.
[25] Y. Zhou, Basic theory of fractional diﬀerential equations, WorldScientiﬁc, Singapore, 2014.
[26] K. Diethelm, The analysis of fractional diﬀerential equations(Berlin: Springer, 2010).63
[27] D. Dudkowski, S. Jafari, T. Kapitaniak, N.V. Kuznetsov,G.A. Leonov, and A. Prasad, Hidden attractors in dynamicalsystems, Physics Reports, 637, 2016, 1–50.
[28] K. Rajagopal, A. Karthikeyan, and A. Srinivasan, FPGAimplementation of novel fractional order chaotic system withtwo equilibriums and no equilibrium and its adaptive slidingmode synchronization, Nonlinear Dynamics, 87, 2017, 2281–2304.
[29] E. Tlelo-Cuautle, V.H. Carbajal-Gomez, and P.J. Obeso-Rodelo, FPGA realization of a chaotic communication systemapplied to image processing, Nonlinear Dynamics, 82, 2015,1879–1892.
[30] E. Tlelo-Cuautle, A.D. Pano-Azucena, and J.J. Rangel-Magdaleno, Generating a 50-scroll chaotic attractor at 66 MHzby using FPGAs, Nonlinear Dynamics, 85, 2016, 2143–2157.
[31] E. Tlelo-Cuautle, J.J. Rangel-Magdaleno, A.D. Pano-Azucena,P.J. Obeso-Rodelo, and J.C. Nunez-Perez, FPGA realization ofmulti-scroll chaotic oscillators, Communications in NonlinearScience and Numerical Simulation, 27, 2015, 66–80.
[32] Q.X. Wang, S.M. Yu, C.Q. Li, and J.H. L¨u, Theoretical designand FPGA-based implementation of high-dimensional digitaldomain chaotic systems with random bits iterative update,IEEE Transactions on Circuits and Systems I: Regular Papers,63, 2016, 401–412.
[33] K. Rajagopal, G. Laarem, A. Karthikeyan, A. Srinivasan, andG. Adam, Fractional order memristor no equilibrium chaoticsystem with its adaptive sliding mode synchronization andgenetically optimized fractional order PID synchronization,Complexity, 2017, 2017, 1892618
[34] H.K. Moﬀatt, A self-consistent treatment of simple dynamosystems, Geophysical & Astrophysical Fluid Dynamics, 14,1979, 147–166.
[35] J.H. Bao and D.D. Chen, Coexisting hidden attractors in a4D segmented disc dynamo with one stable equilibrium or aline equilibrium, Chinese Physics B, 26, 2017, 080201.
[36] E.Z. Dong, Z.H. Liang, and S.Z. Du, Topological horseshoeanalysis on a four-wing chaotic attractor and its FPGA imple-ment, Nonlinear Dynamic, 83, 2016, 623–630.
[37] V. Rashtchi and M. Nourazar, FPGA implementation of a real-time weak signal detector using a duﬃng oscillator, Circuits,Systems, and Signal Processing, 34, 2015, 3101–3119.
[38] Y.M. Xu, L.D. Wang, and S.K. Duan, A memristor-basedchaotic system and its ﬁeld programmable gate array imple-mentation, Acta Physica Sinica, 65(12), 2016, 120503.
[39] K. Rajagopal, L. Guessas, S. Vaidyanathan, A. Karthikeyan,and A. Srinivasan, Dynamical analysis and FIGA implemen-tation of a novel hyperchaotic system and its synchronizationusing adaptive sliding mode control and genetically optimizedPID control, Mathematical Problems in Engineering, 2017,2017, 7307452.
[40] C.S. Shieh, FPGA chip with fuzzy PWM control for synchro-nizing a chaotic system, Control and Intelligent Systems, 40,2012, 144–150.
[41] A. Ruzitalab, M.H. Farahi, and G.H. Erjaee, Synchronizationof multiple chaotic systems using a nonlinear grouping feedbackfunction method, Control and Intelligent Systems, 46, 2018,1–6.
Important Links:
Abstract
DOI:
10.2316/J.2020.201-0034
From Journal
(201) Mechatronic Systems and Control - 2020
Go Back