Tor Inge Reigstad and Kjetil Uhlen


  1. [1] C.E.O.H. ENTSO-E, “P1-policy 1: Load-frequency control andperformance, 2009., Technical Report, 2009 (accessed: Des. 22, 2020).
  2. [2] E. Ørum, L. Haarla, M. Kuivaniemi, et al., Future systeminertia 2, ENTSOE, Brussels, Technical Report, 2018.
  3. [3] Statnett, Fast frequency reserves 2018,, Technical Report, 2018 (accessed: Aug. 19,2020).
  4. [4] M. Valavi and A. Nysveen, Variable-speed operation of hy-dropower plants: Past, present, and future, 2016 XXII Int.Conf. on Electrical Machines (ICEM), Lausanne, Switzerland,2016, 640–646.
  5. [5] W. Bao, Q. Wu, L. Ding, S. Huang, F. Teng, and V. Terzija,Synthetic inertial control of wind farm with BESS based onmodel predictive control, IET Renewable Power Generation,14, 2020, 2447–2455.
  6. [6] A. Gloe, C. Jauch, B. Craciun, and J. Winkelmann, Continuousprovision of synthetic inertia with wind turbines: implicationsfor the wind turbine and for the grid, IET Renewable PowerGeneration, 13(5), 2019, 668–675.
  7. [7] L. Saarinen, P. Norrlund, W. Yang, and U. Lundin, Linearsynthetic inertia for improved frequency quality and reducedhydropower wear and tear, International Journal of ElectricalPower & Energy Systems, 98, 2018, 488–495.
  8. [8] L. Toma, M. Sanduleac, S.A. Baltac, et al., On the virtualinertia provision by BESS in low inertia power systems, 2018IEEE Int. Energy Conf. (ENERGYCON), Limassol, Cyprus,2018, 1–6.
  9. [9] S. D’Arco, T.T. Nguyen, and J.A. Suul, Evaluation of virtualinertia control strategies for MMC-based HVDC terminals byP-HiL experiments, IECON 2019-45th Annu. Conf. of theIEEE Industrial Electronics Society, Lisbon, Portugal, 2019,4811–4818.
  10. [10] U. Tamrakar, D. Shrestha, M. Maharjan, B.P. Bhattarai, T.M.Hansen, and R. Tonkoski, Virtual inertia: Current trends andfuture directions, Applied Sciences, 7(7), 2017, 654.
  11. [11] N.R. Ullah, T. Thiringer, and D. Karlsson, Temporary primaryfrequency control support by variable speed wind turbines–potential and applications, IEEE Transactions on Power Sys-tems, 23(2), 2008, 601–612.
  12. [12] M.A. Torres L, L.A. Lopes, L.A. Moran T, and J.R. Espinoza C,Self-tuning virtual synchronous machine: a control strategy forenergy storage systems to support dynamic frequency control,IEEE Transactions on Energy Conversion, 29, 2014, 833–840.
  13. [13] K. Sakimoto, Y. Miura, and T. Ise, Stabilization of a powersystem with a distributed generator by a virtual synchronousgenerator function, 2011 IEEE 8th Int. Conf. on Power Elec-tronics and ECCE Asia (ICPE & ECCE), Jeju, South Korea,2011, 1498–1505.
  14. [14] M. Van Wesenbeeck, S. De Haan, P. Varela, and K. Visscher,Grid tied converter with virtual kinetic storage, 2009 IEEEBucharest PowerTech, Bucharest, Romania, 2009, 1–7.
  15. [15] R. Hesse, D. Turschner, and H.-P. Beck, Micro grid stabilizationusing the virtual synchronous machine (visma), Proc. of the Int.Conf. on Renewable Energies and Power Quality (ICREPQ’09),Valencia, Spain, 2009, 15–17.
  16. [16] O. Mo, S. D’Arco, and J.A. Suul, Evaluation of virtual syn-chronous machines with dynamic or quasi-stationary machinemodels, IEEE Transactions on Industrial Electronics, 64(7),2017, 5952–5962.
  17. [17] H.-P. Beck and R. Hesse, Virtual synchronous machine, 9thInt. Conf. on Electrical Power Quality and Utilisation, 2007.EPQU 2007, Barcelona, Spain, 2007, 1–6.
  18. [18] J. Driesen and K. Visscher, Virtual synchronous generators,Proc. of the IEEE PES Meeting, Pittsburgh, PA, 2008, 20–24.
  19. [19] T.I. Reigstad and K. Uhlen, Variable speed hydropower con-version and control, IEEE Transactions on Energy Conversion,35(1), 2020, 386–393.
  20. [20] T.I. Reigstad and K. Uhlen, Modelling of variable speedhydropower for grid integration studies, arXiv:2003.06298,2020.
  21. [21] P. Kundur, N.J. Balu, and M.G. Lauby, Power system stabilityand control vol. 7 (New York: McGraw-Hill, 1994).

Important Links:

Go Back