Yuanfang Xin,∗ Yuanyuan Jiang,∗ and Yanbin Liu∗∗


  1. [1] C. Fenglin, L. Yongbin, F. Jian et al., Machine status fea-ture extraction method based on EMD and JADE, ComputerEngineering, 41(7), 2015, 305–309.
  2. [2] L.L.C. Kasun, Y. Yang, G.B. Huang et al., Dimension reductionwith extreme learning machine, IEEE Transactions on ImageProcessing, 25(8), 2016, 3906–3918.
  3. [3] L. Wang, X. Zhou, Y. Xing et al., Clustering ECG heart-beat using improved semi-supervised affinity propagation, IETSoftware, 11(5), 2017, 207–213.
  4. [4] Q. Gong and P.-F. Tang, Uncorrelated locality preservingprojections analysis based on maximum margin criterion, ActaAutomatica Sinca, 39(9), 2013, 1575–1580.
  5. [5] Y. Liu, B. He, F. Liu et al., Feature fusion using kerneljoint approximate diagonalization of eigen-matrices for rollingbearing fault identification, Journal of Sound and Vibration,385, 2016, 389–401.
  6. [6] J. Cui, J. Tang, C. Gong, and Z. Zhang, A fault featureextraction method of aerospace generator rotating rectifierbased on improved stacked auto-encoder, Proceedings of theCSEE, 37(19), 2017, 5696–5706.
  7. [7] Q. L¨u, Y. Dou, X. Niu, J. Xu, and F. Xia, Remote sensingimage classification based on DBN model, Journal of ComputerResearch and Development, 51(9), 2014, 1911–1918.243
  8. [8] Y. Qian, X. Ding, T. Liu et al., Identification method of user’stravel consumption intention in chatting robot, Social ScienceInformation, 47, 2017, 997–1007.
  9. [9] Y.-J. Duan, Y.-S. Lv, J. Zhang, X.-L. Zhao, and F.-Y. Wang.Deep learning for control: The state of the art and prospects,Acta Automatica Sinica, 42(5), 2016, 643–654.
  10. [10] L. Wen, X. Li, L. Gao et al., A new convolutional neu-ral network-based data-driven fault diagnosis method, IEEETransactions on Industrial Electronics, 65(7), 2018, 5990–5998.
  11. [11] Z. Zhou, G. Huang, J. Gao, and X. Man, Radar emitteridentificational algorithm based on deep learning, Journal ofXidian University, 44(3), 2017, 77–82.
  12. [12] J.W. Shang, C.K. Wang, X. Xin, and X. Ying, Communitydetection algorithm based on deep sparse autoencoder, RuanJian Xue Bao/Journal of Software, 28(3), 2017, 648–662.
  13. [13] L. Qiu, T. Liu, N. Lin, and Z. Huang, Data aggregation inwireless sensor network based on deep learning model, ChineseJournal of Sensors and Actuators, 27(12), 2014, 1704–1709.
  14. [14] N. Li, Y. Li, X. Zhu, H. Lei, and J. Yu, Fault diagnosis fornew inverter circuits based on mixed logic dynamic modeland incident identification vector, Power System Technology,37(10), 2013, 2808–2813.
  15. [15] Y. Xia, J. Roy, and R. Ayyanar, A capacitance-minimized,doubly grounded transformer less photovoltaic inverter withinherent active-power decoupling, IEEE Transactions on PowerElectronics, 32(7), 2017, 5188–5201.
  16. [16] Y. Jiang, Y. Wang, Y. Wu, Q. Sun, and H. Luo, Online multiplefault diagnosis for PV inverter based on wavelet packet energyspectrum and extreme learning machine, Chinese Journal ofScientific Instrument, 36(9), 2015, 2145–2152.

Important Links:

Go Back