Ming Yin∗,∗∗


  1. [1] A.S. Sarathi Vasan, Diagnostics and prognostics method for analog electronic circuits, IEEE Transactions on Industrial Electronics, 60(11), 2013, 5277–5291.
  2. [2] T. Kuremoto, S. Kimura, K. Kobayashi, et al., Time series forecasting using a deep belief network with restricted Boltzmann machines, Neurocomputing, 137(15), 2014, 47–56.
  3. [3] A.E. Elsaid, B. Wild, J. Higgins, et al., Using LSTM recurrent neural networks to predict excess vibration events in aircraft engines, 2016 IEEE 12th International Conf. on e-Science (e-Science), IEEE Computer Society, NewYork, United States, 2016.
  4. [4] M. Rahaman, W. Mu, J. Odqvist, et al., Machine learning to predict the martensite start temperature in steels, Metallurgical and Materials Transactions A, 50(4), 2019, 2081–2091.
  5. [5] W. He, N. Williard, M. Osterman, and M. Patch, Remaining useful performance analysis of batteries, IEEE Conf. on Prognostics and Health Management, Beijing, China, 2011, 157–168.
  6. [6] S. Tippmann, R.D. Walpe, L. Balbos, et al., Low-temperature charging of Li-ion cells part I. Electrochemical modeling and experimental investigation of degradation behavior, Journal of Power Sources, 252, 2014, 305–316.
  7. [7] W. He, D.N. Williar, M. Oster Man, et al., Prognostics of Li-ion batteries based on Dempster–Shafer theory and the Bayesian Monte Carlo method, Journal of Power Sources, 196(23), 2011, 10314–10321.
  8. [8] M.B. Pinson and M.Z. Bazant, Theory of SEI formation in rechargeable batteries: Capacity fade, accelerated aging and lifetime prediction, Journal of the Electrochemical Society, 160(2), 2012, 243–250.
  9. [9] S. Kayalvizhi and D.M. Vinod Kumar, Planning of autonomous microgrid with energy storage using grid-based multi-objective harmony search algorithm, International Journal of Power and Energy Systems, 37(1), 2017, 815–826. doi: 10.2316/Journal. 203.2017.1.203-6276.
  10. [10] V. Shetty, D. Das, M. Pecht, D. Hiemstra, and S. Martin, Remaining life assessment of shuttle remote manipulator system end effector, Proc. of the 22nd Space Simulation Conf., Paris, France, 2002, 1121–1135.
  11. [11] J. Gu and M. Pecht, Prognostics implementation of electronics under vibration loading, Microelectronics Reliability, 47(12), 2007, 1849–1856.
  12. [12] J.Z. Sikorska, M. Hodkiewicz, and L. Ma, Prognostic modelling options for remaining useful life estimation by industry, Mechanical Systems and Signal Processing, 25(5), 2011, 1803–1836.
  13. [13] B.P. Gibbs, Advanced Kalman filtering, least-squares and modeling (Hoboken, NJ: Wiley, 2011).
  14. [14] B. Saha, K. Goebel, and J. Christophersen, Comparison of prognostic algorithms for estimating remaining useful life of batteries, Transactions of the Institute of Measurement and Control, 31(3), 2009, 293–308.
  15. [15] D. Mestriner and M. Invernizzi, Analysis of lighting effects on power plant connection, International Journal of Power and Energy Systems, 38(2), 2018, 526–535. doi: 10.2316/Journal. 203.2018.2.203-0011.
  16. [16] M. Yin, Y. Xu, X. Ye, et al., Fault prognostic based on ARLSSVR for electrolytic capacitor, Technical Gazette, 24(3), 2017, 782–789.

Important Links:

Go Back