Zimo Zhou∗ and Xinting Yang∗∗


  1. [1] J. Rutherford and J.M. Webster, Distribution of pine wiltdisease with respect to temperate in North America, Japan,and Europe, Canadian Journal of Forest Research, 17, 1987,1050–1059.
  2. [2] S. Ren, K. He, R. Girshick, and J. Sun, Faster R-CNN: Towardsreal-time object detection with region proposal networks, NIPS,2015, 91–99.
  3. [3] S. Rathinam, P. Almeida, Z. Kim; S. Jackson, A. Tinka,W. Grossman, and R. Sengupta, Autonomous searching andtracking of a river using an UAV, 2007 American ControlConference, New York, NY, 2007, 359–364.
  4. [4] B. Benjdira, T. Khursheed, A. Koubaa, A. Ammar, and K.Ouni, Car detection using unmanned aerial vehicles: Com-parison between faster R-CNN and YOLOv3, 2019 1st In-ternational Conference on Unmanned Vehicle Systems-Oman(UVS), Muscat, Oman, 2019, pp. 1–6.
  5. [5] L. Jangwon, W. Jingya, C. David, S. Selma, and F. Ge-offrey, IEEE 2017 First IEEE International Conference onRobotic Computing (IRC) – Taichung, Taiwan, 2017, 2017.4.10–2017.4.12.
  6. [6] C. Ovidiu, C. John, J. Robert, L. Andy, and K. Maggi,Identification of Citrus Trees from Unmanned Aerial VehicleImagery Using Convolutional Neural Networks Drones 2, 4,2018, 39.
  7. [7] P. Lottes, R. Khanna, J. Pfeifer, R. Siegwart, and C. Stachniss,UAV-based crop and weed classification for smart farming, 2017IEEE International Conference on Robotics and Automation(ICRA), Singapore, 2017, 3024–3031.
  8. [8] C. Lisa, M. Corniglia, M. Gaetani, N. Grossi, S. Magni, M.Migliazzi, and L. Angelini, Unmanned aerial vehicle to estimatenitrogen status of turfgrasses. PloS One, 11(6), 2016; 6(2),2017, e00415.
  9. [9] R. Girshick, J. Donahue, T. Darrell, and J. Malik, Richfeature hierarchies for accurate object detection and semanticsegmentation, IEEE Conference on Computer Vision andPattern Recognition (CVPR), 2014.
  10. [10] R. Girshick, Fast R-CNN, Proceedings of the 2015 IEEEInternational Conference on Computer Vision (ICCV) (ICCV’15) (USA: IEEE Computer Society, 2015), 1440–1448.
  11. [11] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, You onlylook once: unified, real-time object detection, 2016 IEEE Con-ference on Computer Vision and Pattern Recognition (CVPR),Las Vegas, NV, 2016, 779–788.
  12. [12] C. Binghuang and X. Miao, Distribution line pole detectionand counting based on YOLO using UAV inspection line video,Journal of Electrical Engineering & Technology, 15, 2020,441–448.
  13. [13] H. Chen, Z. He, B. Shi, and T. Zhong, Research on recognitionmethod of electrical components based on YOLO V3, IEEEAccess, 7, 2019, 157818–157829.
  14. [14] Y. Xu, G. Yu, Y. Wang, X. Wu, and Y. Ma, Car detection fromlow-altitude UAV imagery with the faster R-CNN, Journal ofAdvanced Transportation, 2017, Article ID 2823617, 2017, 10pages.
  15. [15] “Bursaphelenchus xylophilus”. Wikipedia.
  16. [16] T. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,P. Dollr, and C.L. Zitnick, Microsoft COCO: Common objectsin context, in D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars(eds.), Computer Vision – ECCV 2014. ECCV 2014. Lec-ture Notes in Computer Science, vol. 8693 (Springer, Cham,2014).
  17. [17] J. Pang, K. Chen, J. Shi, H. Feng, W. Ouyang, and D.Lin, Libra R-CNN: Towards balanced learning for objectdetection, 2019 IEEE/CVF Conference on Computer Visionand Pattern Recognition (CVPR), Long Beach, CA, USA, 2019,821–830.
  18. [18] J. Wang, K. Chen, S. Yang, C.C. Loy, and D. Lin, Regionproposal by guided anchoring, 2019 IEEE/CVF Conferenceon Computer Vision and Pattern Recognition (CVPR), LongBeach, CA, USA, 2019, 2960–2969.
  19. [19] J. Redmon and A. Farhadi, Yolov3: An incremental improve-ment, arXiv preprint arXiv:1804.02767, 2018.
  20. [20] G. Jocher,
  21. [21] A. Bochkovskiy, C.Y. Wang, and H.M. Liao, YOLOv4: Optimalspeed and accuracy of object detection. ArXiv, abs/2004.10934,2020.
  22. [22] D. Tzutalin,
  23. [23] T.Y. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan, and S.Belongie, Proceedings of the IEEE Conference on ComputerVision and Pattern Recognition (CVPR), 2017, 2117–2125.
  24. [24] Z. Zheng, P. Wang, W. Liu, J. Li., R. Ye, and D. Ren, 2020.Distance-IoU loss: Faster and better learning for bounding boxregression, Proceedings of the AAAI Conference on ArtificialIntelligence, 34, 07 April 2020, 12993–13000.
  25. [25] L. Tsung-Yi, P. Doll´ar, R. Girshick, K. He, B. Hariharan, andS.J. Belongie, Feature pyramid networks for object detection.2017 IEEE Conference on Computer Vision and PatternRecognition (CVPR), 2017, 936–944.

Important Links:

Go Back