Yue Li,∗ Xin Li,∗ Daqi Zhu,∗ and Simon X. Yang∗∗


  1. [1] D.Q. Zhu, X.L. Cheng, L. Yang, Y.S. Chen, S.X. Yang, Informa-tion fusion fault diagnosis method for deep-sea human occupiedvehicle thruster Based on deep belief network, IEEE Transac-tions on Cybernetics, 2021, doi: 10.1109/TCYB.2021.3055770.
  2. [2] L. Paull, S. Saeedi, M. Seto, and H. Li, AUV navigation andlocalization: a review, IEEE Journal of Oceanic Engineering,39(1), 2014, 131–149.
  3. [3] X. Li, D. Zhu, and Y. Qian, A Survey on formation controlalgorithms for multi-AUV system, Unmanned Systems, 2(4),2014, 351–359.
  4. [4] P.K.C. Wang, Navigation strategies for multiple autonomousmobile robots moving in formation, Intelligent Robots andSystems, 8(2), 1991, 177–195.
  5. [5] J. Li and X. Du, Underactuated multi-AUV robust formationcontrol based on virtual leader, 2018 IEEE International Conf.on Mechatronics and Automation, Changchun, China, 2018,1568–1573.
  6. [6] J. Li, X. Zhang, H. Zhang, and X. Du, Trajectory trackingcontrol of multi-AUVs formation based on virtual leader,2019 IEEE International Conference on Mechatronics andAutomation, Tianjin, China, 2019, 291–296.
  7. [7] W. Ren, Decentralization of virtual structures in formationcontrol of multiple vehicle systems via consensus strategies, Eu-ropean Journal of Control, 14(2), 2008, 93–103.
  8. [8] W.W. Pan, D.P. Jiang, Y.J. Pang, et al., A Multi-AUV formation algorithm combining artificial potential fieldand virtual structure, Acta Armamentarii, 38(2), 2017,326–334.
  9. [9] N.E. Leonard and E. Fiorelli, Virtual leaders, Artificial poten-tials and coordinated control of groups, Proc. the 40th IEEEConf. on Decision and Control, vol. 3, Orlando, FL, 2001,2968–2973.
  10. [10] S. Cifuentes, J.M. Gir´on-Sierra, and J. Jimnez, Virtual fieldsand behavior blending for the coordinated navigation of robotteams: some experimental results, Expert Systems with Appli-cations, 42(10), 2015, 4778–4796.
  11. [11] T. Balch and R.C. Arkin, Behavior-based formation controlfor multi-robot teams, IEEE Transactions on Robotics andAutomation, 14(6), 1998, 926–939.
  12. [12] P. Ogren, M. Egerstedt, and X. Hu, A control Lyapunov func-tion approach to multi-agent coordination, IEEE Transactionson Robotics and Automation, 18(5), 2002, 847–851.
  13. [13] W. Ren and R.W. Beard, Formation feedback control formultiple spacecraft via virtual structures, Control Theory andApplications, 151(3), 2004, 357–368.
  14. [14] W. Ren and R.W. Beard, Decentralized scheme for spacecraftformation flying via the virtual structure approach, Journal ofGuidance, Control, and Dynamics, 27(1), 2004, 73–82.
  15. [15] G. Wen, Y. Zhao, Z. Duan, and G. Chen, Containmentof higher-order multi-leader multi-agent systems: a dynamicoutput approach, IEEE Transactions on Automatic Control,61(1), 2016, 1135–1140.
  16. [16] B.D.O. Anderson, C. Yu, B. Fidan, and J.M. Hendrickx, Rigidgraph control architectures for autonomous formations, IEEEControl Systems Magazine, 28(6), 2008, 48–63.
  17. [17] J. Kennedy and R. Eberhart, Particle swarm optimization,Proc.1995 IEEE International Conference on Neural Networks,Piscataway, 1942–1948.
  18. [18] Y. Gao and X. Gao, Particle Swarm Optimization Algorithmand Its Application in Bionic Intelligent Calculation, vols.2 and 3 (Beijing: Science Publishing House, 2018), 11–19,29–36.
  19. [19] Y. Shi and R.C. Eberhart, Empirical study of particle swarmoptimization, Proc. 1999 Congress on Evolutionary Computa-tion, vol. 3, Washington, DC, 19, 1945–1950.
  20. [20] C. Sammut and G.I. Webb, Particle Swarm Optimization. En-cyclopedia of Machine Learning, vol. 4 (New York: SpringerUS, 2011), 760–766.
  21. [21] H.S. Lim, S. Fan, C.K.H. Chin, S. Chai, et al., Particle swarmoptimization algorithms with selective differential evolution forAUV path planning, International Journal of Robotics andAutomation, 9(2), 2020, 94–112.300
  22. [22] W. Gan, D. Zhu, and S.X. Yang, A speed jumping-free trackingcontroller with trajectory planner for unmanned underwatervehicle, International Journal of Robotics and Automation,35(5), 2020.
  23. [23] J. Ke, J.X. Qian, and Y.Z. Qiao, A modified particle swarmoptimization algorithm, Journal of Circuits and Systems, 8(5),2003, 87–91.
  24. [24] F. Piltan, N. Sulaiman, A. Gavahian, et al., Design math-ematical tunable gain PID-like sliding mode fuzzy controllerwith minimum rule base, International Journal of Robotic andAutomation, 2(3), 2011, 146–156.
  25. [25] Y. Wang, X. Yang, and H. Yan, Reliable fuzzy tracking controlof near-space hypersonic vehicle using aperiodic measurementinformation, IEEE Transactions on Industrial Electronics,2019, 1.
  26. [26] Y. Wang, H.R. Karimi, H.K. Lam, et al., Fuzzy output track-ing control and filtering for nonlinear discrete-time descriptorsystems under unreliable communication links, IEEE Trans-actions on Cybernetics, 99, 2019, 1–11.
  27. [27] Y. Wang, W. Zhou, J. Luo, et al., Reliable intelligent pathfollowing control for a robotic airship against sensor faults,IEEE/ASME Transactions on Mechatronics, 24(6), 2020,2572–2582.
  28. [28] Z. Li, H. Yan, H. Zhang, S. Jun, et al., Stability and stabiliza-tion with additive freedom for Delayed Takagi-Sugeno fuzzysystems by intermediary-polynomial-based functions, IEEETransactions on Fuzzy Systems, 28(4), 2020, 692–705.
  29. [29] Z. Li, H. Yan, H. Zhang, X. Zhan, et al., Stability analysis fordelayed neural networks via improved auxiliary polynomial-based functions, IEEE Transactions on Neural Networks andLearning Systems, 30(8), 2019, 2562–2568.
  30. [30] Z. Li, Y. Bai, C. Huang, H. Yan, et al., Improved stabilityanalysis for delayed neural networks, IEEE Transactions onNeural Networks and Learning Systems, 29(9), 2018, 4535–4541.
  31. [31] X. Li and D. Zhu, An adaptive SOM neural network methodfor distributed formation control of a group of AUVs, IEEETransactions on Industrial Electronics, 65(10), 2018, 8260–8270.
  32. [32] R. Liu and Y. Zhang, Task allocation of multiple autonomousunderwater vehicles based on improved ant colony algorithm,Chinese Journal of Ship Research, 13(6), 2018, 107–112.
  33. [33] Z. Li, C. Huang, and H. Yan, Stability analysis for systems withtime delays via new integral inequalities, IEEE Transactions onSystems Man & Cybernetics Systems, 48(12), 2018, 2495–2501.
  34. [34] Z. Li, H. Yan, H. Zhang, X. Zhan, et al., Improved inequality-based functions approach for stability analysis of time delaysystem, Automatica, 108(10), 2019, 416–424.
  35. [35] Z. Li, H. Yan, H. Zhang, Y. Peng, et al., Stability analysisof linear systems with time-varying delay via intermediatepolynomial-based functions, Automatica, 113(3), 2020, 756–762.

Important Links:

Go Back