Tapas K. Maiti,∗ Sunandan Dutta,∗∗ Yoshihiro Ochi,∗∗ Mitiko Miura-Mattausch,∗∗ and Hans J. Mattausch∗∗


  1. [1] S. Kajita, H. Hirukawa, K. Harada, and K. Yokoi, Introductionto humanoid robotics (Berlin Heidelberg: Springer-Verlag,2014).
  2. [2] B. Siciliano and O. Khatib, Springer handbook of robotics(Berlin Heidelberg: Springer-Verlag, 2008).
  3. [3] P. Chattopadhyay, S. K. Ghoshal, and A. Majumder, Imple-mentation of piecewise sine functions on limbless robot loco-motion, International Journal of Robotics and Automation,35(4), 2020, doi: 10.2316/j.2020.206-0159.
  4. [4] L. Tong, F. Zhang, Z. Hou, W. Wang, and L. Peng, BP-AR based human joint angle estimation using multi-channelsEMG, International Journal of Robotics and Automation,30(3), 2015, 227–237.
  5. [5] O. Tutsoy, CPG based RL algorithm learns to control of ahumanoid robot leg, International Journal of Robotics Au-tomation 30(2), 2015, 1–7.
  6. [6] X. Da, R. Hartley, and J. W. Grizzle, Supervised learningfor stabilizing under actuated bipedal robot locomotion withoutdoor experiments on the wave field, IEEE InternationalConference on Robotics and Automation, Singapore, 2017,3476–3483.
  7. [7] F. Samadi, S. Khanmohammadi, and A. R. Ghiasi, Footand body control of humanoid robots using fuzzy controller,International Journal of Robotics and Automation, 32(4),2017, doi: 10.2316/Journal.206.2017.4.206-4004.
  8. [8] S. Erden and J. A. Jonkman, Physical human-robot interac-tion by observing actuator currents, International Journal ofRobotics and Automation, 27(3), 2012, 233–243.
  9. [9] R. Zhao and D. Sidobre, A framework for human-robot inter-action in collaborative manufacturing environments, Interna-tional Journal of Robotics and Automation, 34(6), 2019, doi:10.2316/J.2019.206-0220.
  10. [10] M. Vukobratovic and B. Borovac, Zero-moment point – thirtyfive years of its life, International Journal of HumanoidRobotics, 1(1), 2004, 157–173.
  11. [11] G. Metta, L. Natale, F. Nori, G. Sandini, D. Vernon, L. Fadiga,C. Hofsten, K. Rosander, M. Lopes, J. Santos-Victor, A.Bernardino, and L. Montesano, The iCub humanoid robot: anopen-systems platform for research in cognitive development,Neural Networks, 23(8), 2010, 1125–1134.
  12. [12] SoftBank Robotics, 2018, https://www.softbankrobotics.com
  13. [13] ASIMO Technical Information, Honda Motor Co., Ltd., 2007.
  14. [14] S. Feng, X. Xinjilefu, C. Atkeson, and J. Kim, Optimizationbased controller design and implementation for the atlas robotin the DARPA robotics challenge finals, IEEE-RAS Interna-tional Conference on Humanoid Robots, Seoul, Korea, 2015,1028–1035.
  15. [15] K. Kaneko, F. Kanehiro, M. Morisawa, T. Tsuji, K. Miura, S.Nakaoka, S. Kajita, and K. Yokoi, Hardware improvement ofcybernetic human HRP-4C for entertainment use, IEEE/RSJInternational Conference on Intelligent Robots and Systems,San Francisco, CA, 2011, 4392–4399.
  16. [16] J. Y. Kim, I. W. Park, and J. H. Oh, Experimental realizationof dynamic walking of the biped humanoid robot KHR-2using zero moment point feedback and inertial measurement,Advanced Robotics, 20(6), 2006, 707–736.
  17. [17] I.-W. Park, J.-Y. Kim, J. Lee, and J.-H. Oh, Mechanical designof the humanoid robot platform HUBO, Advanced Robotics,21(11), 2007, 1305–1322.
  18. [18] Z. Tan, Study on mechanics laws for anthropomorphic bipedrobots to walk dynamically on sloping surface, IEEE Inter-national Conference on Robotics and Automation (ICRA),Minneapolis, Minnesota, 1996, 252–257.
  19. [19] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada,K. Yokoi, and H. Hirukawa, Biped walking pattern generationby using preview control of zero-moment point, IEEE In-ternational Conference on Robotics and Automation (ICRA),Taipei, Taiwan, 2003, 1620–1626.
  20. [20] F. Ali, A. Z. H. Shukor, M. F. Miskon, M. K. Nor, and S.I. M. Salim, 3-D biped robot walking along slope with duallength linear inverted pendulum method (DLLIPM), Interna-tional Journal of Advanced Robotic Systems, 10(11), 2013,377–388.
  21. [21] F. Guo, T. Mei, M. Ceccarelli, Z. Zhao, T. L. and J. Zhao,A generic walking pattern generation method for humanoidrobot walking on the slope, Industrial Robot: An InternationalJournal, 43(3), 2016, 317-327.
  22. [22] L. Meng, M. Ceccarelli, Z. Yu, X. Chen, and Q. Huang, An ex-perimental characterization of human falling down, MechanicalSciences, 8 (1), 2017, 79-89.
  23. [23] L. Capisani and A. Ferrara, Trajectory planning and second-order sliding mode motion/interaction control for robot343manipulators in unknown environments, IEEE Transactionson Industrial Electronics, 59(8), 2012, 3189–3198.
  24. [24] N. Hogan, A general actuator model based on nonlinear equiv-alent networks, IEEE /ASME Transactions on Mechatronics,19(6), 2014, 1929–1939.
  25. [25] M. W. Spong, S. Hutchinson, and M. Vidyasagar, RobotModeling and Control (New York: John Wiley & Sons, 2006).
  26. [26] J. Chen, M. Henrie, M. F. Mar, and M. Nizic, Mixed-signalmethodology guide (Cadence Design Systems Inc., 2012).
  27. [27] SystemVision Multi-Discipline Development Environment:Integrated, scalable environment for circuit, system andmechatronic modeling, 2018. https://www.mentor.com/ prod-ucts/sm/system integration simulation analysis/systemvision/
  28. [28] P. A. Schmidt, E. Malb, and R. P. Wrtz, A sensor fordynamic tactile information with applications in human–robotinteraction and object exploration, Robotics and AutonomousSystems, 54(12), 2006, 1005–1014.
  29. [29] H. Zhang and E. So, Hybrid resistive tactile sensing, IEEETransactions on Systems, Man, and Cybernetics, Part B(Cybernetics), 32(1), 2002, 57–65.
  30. [30] J. Dargahi, M. Parameswaran, and S. Payandeh, A microma-chined piezoelectric tactile sensor for an endoscopic grasper-theory, fabrication and experiments, Journal of Microelec-tromechanical Systems, 9(3), 2000, 329–335.
  31. [31] T. K. Maiti, L. Chen, M. Miura-Mattausch, S. K. Koul, andH. J. Mattausch, Physics based system simulation for robotelectro-mechanical control design, Electron Devices Technologyand Manufacturing Conference, Toyama, Japan, 2017, 259–261.
  32. [32] T. K. Maiti, Y. Ochi, D. Navarro, M. Miura-Mattausch, and H.J. Mattausch, Walking robot movement on non-smooth surfacecontrolled by pressure sensor, Advanced Material Letters, 9(2),2018, 23–127.
  33. [33] S. Dutta, T. K. Maiti, Y. Ochi, M. Miura-Mattausch, S.Bhattacharya, D. Navarro, N. Yorino, and H. Jrgen Mattausch,Self-controlled walking robot with gyro sensor network forstable movement on non-smooth surface, IEEE InternationalConference on Simulation, Modeling, and Programming forAutonomous Robots, Brisbane, Australia, 2018, 42–48.
  34. [34] T. K. Maiti, S. Dutta, S. Bhattacharya, Y. Ochi, D. Navarro,M. Miura-Mattausch, and H. J. Mattausch, Modeling of multi-dimensional system and its application for robot development,International Symposium on Devices, Circuits and Systems,Kolkata, India, 2018, 1–4.
  35. [35] T. K. Maiti, L. Chen, H. Zenitani, H. Miyamoto, M. Miura-Mattausch, and H. J. Mattausch, Compact electro-mechanical-fluidic model for actuated fluid flow system, IEEE Journal onMultiscale and Multiphysics Computational Techniques, 2(1),2017, 124–133.
  36. [36] M. Kalantari, J. Dargahi, J. Kvecses, M. G. Mardasi, and S.Nouri, A new approach for modeling piezoresistive force sensorsbased on semiconductive polymer composites, IEEE/ASMETransactions on Mechatronics, 17(3), 2012, 572–581.
  37. [37] Force Sensors for Design, Tekscan Inc., USA, Feb. 2017,www.tekscan.com
  38. [38] S. D. Senturia, Microsystems Design (Norwell, MA: KluwerAcademic Publisher, 2001).
  39. [39] A. Nathan and H. Baltes, Microsystem simulation, in Micro-transducer CAD, (Vienna: Springer-Verlag Wien 1999), ch. 9,76.
  40. [40] KHR-3HV Humanoid Robot, Kondo Kagaku Co. Ltd., 2021,http://kondo-robot.com
  41. [41] B. Brogliato and P. Orhant, Contact stability analysis of a onedegree-of-freedom robot, Dynamics and Control, 8(1), 1998,37–53.
  42. [42] T. Sugihara and Y. Fujimoto, Dynamics Analysis: Equationsof Motion, in A. Goswami and P. Vadakkepat (eds.) HumanoidRobotics: A Reference, (Springer Netherlands: Springer NatureB V, 2019).
  43. [43] K. Miura, M. Morisawa, F. Kanehiro, S. Kajita, K. Kaneko,and K. Yokoi, Human-like walking with toe supporting for hu-manoids, IEEE International Conference on Intelligent Robotsand Systems (IROS), San Francisco, CA, 2011, 4428–4435.
  44. [44] S. Kajita, K. Kaneko, K. Harada, F. Kanehiro, K. Fujiwara,and H. Hirukawa, Biped walking on a low friction floor, IEEEInternational Conference on Intelligent Robots and Systems,Sendai, Japan, 2004, 3546–3552.
  45. [45] S. Bhattacharya, A. Luo, T. K. Maiti, S. Dutta, Y. Ochi,M. Miura-Mattausch, and H. J. Mattausch, Surface-propertyrecognition with force sensors for stable walking of humanoidrobot, IEEE Access, 7, 2019, 146443–146456.
  46. [46] H. Hemami and V. C. Jaswa, On the three-link model of thedynamics of standing up and sitting down, IEEE Transactionson Systems, Man, and Cybernetics, 8(2), 115–120.
  47. [47] Y. Fujimoto and S. Kajita, A biped walking robot based onposition control, Journal of the Robotics Society of Japan,30(4), 2012, 344–349.
  48. [48] S. Kajita, Feedback Control of Inverted Pendulums, in A.Goswami and P. Vadakkepat (eds.), Humanoid Robotics: AReference, (Springer Netherlands: Springer Nature B V,2019).
  49. [49] J. E. Pratt, C. Ott, and S.-H. Hyon, Introduction to HumanoidBalance, in A. Goswami and P. Vadakkepat (eds.), Humanoidrobotics: A reference (Springer Netherlands: Springer NatureB V, 2019).
  50. [50] S. Hyon, J. G. Hale, and G. Cheng, Full-body compliant human-humanoid interaction: balancing in the presence of unknownexternal forces, IEEE Transactions on Robotics, 23(5), 2007,884–898.
  51. [51] S.-H. Lee and A. Goswami, Ground reaction force control ateach foot: a momentum-based humanoid balance controller fornon-level and non-stationary ground, IEEE/RSJ InternationalConference on Intelligent Robots and Systems (IROS), Taipei,Taiwan, 2010, 3157–3162.
  52. [52] J. Pratt, J. Carff, S. Drakunov, and A Goswami, Capturepoint: a step toward humanoid push recovery, IEEE-RASInternational Conference on Humanoid Robots, Genova, Italy,2006, 200–207.
  53. [53] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada,K. Yokoi, and H. Hirukawa, Biped walking pattern genera-tion by using preview control of zero-moment point, IEEEInternational Conference on Robotics and Automation, Taipei,Taiwan, 2003, 1620–1626.
  54. [54] Y. Choi, D. Kim, Y. Oh, and B. J. You, Posture/walkingcontrol for humanoid robot based on kinematic resolution ofCoM Jacobian with embedded motion, IEEE Transactions onRobotics, 23(6), 2007, 1285–1293.

Important Links:

Go Back