Deepa Sankar, S. Lakshmi, C.A. Babu, and K. Mathew


  1. [1] F. Blaabjerg, Control of power electronic converters andsystems, 1st ed. (London: Academic Press, 2018).
  2. [2] C. Buccella, C. Cecati, and H. Latafat, Digital control ofpower converters—A survey, IEEE Transactions on IndustrialInformatics, 8(3), 2012, 437–447.
  3. [3] S. Kouro, M.A. Perez, J. Rodriguez, A.M. Llor, and H.A.Young, Model predictive control: MPC’s role in the evolutionof power electronics, IEEE Industrial Electronics Magazine,9(4), 2015, 8–21.
  4. [4] P. Karamanakos, E. Liegmann, T. Geyer, and R. Kennel, Modelpredictive control of power electronic systems: Methods, results,and challenges, IEEE Open Journal of Industry Applications,1, 2020, 95–114.
  5. [5] E.F. Camacho and C. Bordons, Model predictive control, 2nded. (London: Springer-Verlag, 2007).
  6. [6] M. Morari and J.H. Lee, Model predictive control: Past, presentand future, Computers and Chemical Engineering, 23(4–5),1999, 667–682.
  7. [7] A. Linder and R. Kennel, Model predictive control for electricaldrives, Proc. IEEE Annual Power Electronics Specialists Conf.(PESC Record), Dresden, 2005, 1793–1799.
  8. [8] T. Geyer, Low complexity model predictive control inpower electronics and power systems, Doctoral Dissertation,Swiss Federal Institute of Technology, Z¨urich, Switzerland,2005
  9. [9] J. Rodriguez, J. Pontt, C.A. Silva, P. Correa, P. Lezana, P.Cortes, and U. Ammann, Predictive current control of a voltagesource inverter, IEEE Transactions on Industrial Electronics,54(1), 2007, 495–503.
  10. [10] P. Cort´es, M.P. Kazmierkowski, R.M. Kennel, D.E. Quevedo,and J. Rodriguez, Predictive control in power electronics anddrives, IEEE Transactions on Industrial Electronics, 55(12),2008, 4312–4324.
  11. [11] S. Vazquez, J. Rodriguez, M. Rivera, L.G. Franquelo, and M.Norambuena, Model predictive control for power converters anddrives: Advances and trends, IEEE Transactions on IndustrialElectronics, 64(2), 2017, 935–947.
  12. [12] G.A. Papafotiou, G.D. Demetriades, and V.G. Agelidis,Technology readiness assessment of model predictivecontrol in medium- and high-voltage power electronics,IEEE Transactions on Industrial Electronics, 63(9), 2016,5807–5815.
  13. [13] H. Abu-Rub, J. Guzi´nski, Z. Krzeminski, and H.A. Toliyat,Predictive current control of voltage-source inverters,IEEE Transactions on Industrial Electronics, 51(3), 2004,585–593.
  14. [14] P. Martin Sanchez, O. Machado, E.J. Bueno Pena, F.J.Rodriguez, and F.J. Meca, FPGA-based implementation ofa predictive current controller for power converters, IEEETransactions on Industrial Informatics, 9(3), 2013, 1312–1321.
  15. [15] M. Curkovic, K. Jezernik, and R. Horvat, FPGA-basedpredictive sliding mode controller of a three-phase inverter,IEEE Transactions on Industrial Electronics, 60(2), 2013,637–644.
  16. [16] M. Pelcat, C. Bourrasset, L. Maggiani, and F. Berry, Design pro-ductivity of a high level synthesis compiler versus HDL, Proc.Int. Conf. Embedded Computer Systems: Architectures, Mod-eling and Simulation (IC-SAMOS), Agios Konstantinos, 2016,140–147. https://doi.org/10.1109/SAMOS.2016.7818341.hal-01358210.
  17. [17] J.J. Rodriguez-Andina, M.D. Valdes-Pena, and M.J. Moure,Advanced features and industrial applications of FPGAS-Areview, IEEE Transactions on Industrial Informatics, 11(4),2015, 853–864.
  18. [18] ITRS, 2011. International Technology Roadmap for Semi-conductors (http://www.itrs.net/reports.html), available athttp://www.itrs.net/reports.html.
  19. [19] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, andZ. Zhang, High-level synthesis for FPGAs: From prototypingto deployment, IEEE Transactions on Computer-Aided Designof Integrated Circuits and Systems, 30(4), 2011, 473–491.
  20. [20] D. Navarro, O. Lucia, L.A. Barragan, I. Urriza, and O. Jimenez,High-level synthesis for accelerating the FPGA implementationof computationally demanding control algorithms for powerconverters, IEEE Transactions on Industrial Informatics, 9(3),2013, 1371–1379.
  21. [21] HDL Coder Documentation, https://www.mathworks.com/help/hdlcoder/index.html?s tid=CRUX lftnav (accessedJun. 26, 2021).
  22. [22] Hardware-software co-design—MATLAB & Simulink, https://www.mathworks.com/help/hdlcoder/hardware-software-codesign-1.html (accessed Jun. 26, 2021).
  23. [23] J. Rodriguez and P. Cortes, Predictive control of powerconverters and electrical drives, 1st ed. (Chichester: Wiley,2012).
  24. [24] P. Cort´es, M.P. Kazmierkowski, R.M. Kennel, D.E. Quevedo,and J. Rodriguez, Predictive control in power electronics anddrives, IEEE Transactions on Industrial Electronics, 55(12),2008, 4312–4324.
  25. [25] J. Rodriguez, M.P. Kazmierkowski, J.R. Espinoza, P.Zanchetta, H. Abu-Rub, H.A. Young, and C.A. Rojas, State ofthe art of finite control set model predictive control in powerelectronics, IEEE Transactions on Industrial Electronics, 9(2),2013, 1003–1016.
  26. [26] HDL Coder-MATLAB & Simulink, https://www.mathworks.com/products/hdl-coder.html (accessed Jul. 3, 2021).
  27. [27] Intel. Intel® MAX® 10 Analog to Digital Converter UserGuide. N.p., (2021).

Important Links:

Go Back