Hao Deng


  1. [1] P. Dendorfer, A. O˘sep, A. Milan, K. Schindler, D. Cremers, I.Reid, S. Roth, and L.L. Taix´e, Motchallenge: A benchmark forsingle-camera multiple target tracking., International Journalof Computer Vision, 129, 2021, 845–881.
  2. [2] J. Upadhyay, A. Rawat, and D. Deb, Multiple drone navigationand formation using selective target tracking-based computervision, Electronics-Switz, 10, 2021, 2125.
  3. [3] T.P. Nascimento and M. Saska, Position and attitude controlof multi-rotor aerial vehicles: A survey, Annual Reviews inControl, 48, 2019, 129–146.
  4. [4] Y. Liu, L. Yao, W. Xiong, T. Jing, and Z. Zhou, Shiptarget tracking based on a low-resolution optical satellite ingeostationary orbit, International Journal of Remote Sensing,39, 2018, 2991–3009.
  5. [5] A. Jebelli, H. Chaoui, A. Mahabadi, and B. Dhillon, Trackingand mapping system for an underwater vehicle in real positionusing sonar system, International Journal of Robotics andAutomation, 37(1), 2022, 124–134.
  6. [6] M. Chiani, A. Giorgetti, and E. Paolini, Sensor radarfor object tracking, Proceedings of the IEEE, 106, 2018,1022–1041.
  7. [7] J. Gu, T. Su, Q. Wang, X. Du, and M. Guizani, Multiplemoving targets surveillance based on a cooperative networkfor multi-UAV, IEEE Communications Magazine, 56, 2018,82–89.
  8. [8] X. Sheng, L. Xu, and Z. Wang, A position-based explicitforce control strategy based on online trajectory prediction,International Journal of Robotics and Automation, 32(1), 2017,93–100.
  9. [9] S. Zhao, Z. Zhu, C. Chen, Y. Du, X. Song, K. Yan, D. Jiang,L. Li, and A. Liu, Trajectory planning of redundant spacemanipulators for multi-tasks, International Journal of Roboticsand Automation, 38(5), 2023, 344–351.
  10. [10] A. Vitali, M. Battipede, and A. Lerro, Multi-objective andmulti-phase 4D trajectory optimization for climate mitigation-oriented flight planning, Aerospace, 8, 2021, 395.
  11. [11] J. Qi, H. Liao, Y. Xu, Z. Zhu, and C. You, Event-triggeredattitude-tracking control for a cableless non-contact close-proximity formation satellite, Aerospace, 9, 2022, 138.
  12. [12] P. Li, X. Wen, M. Zheng, H. Liu, D. Long, and Y. Lu, Discrete-time attitude tracking synchronization for swarms of spacecraftexploiting interference, Aerospace, 9, 2022, 134.
  13. [13] S. Ziadi, M. Njah, M. Chtourou, and S. Charfi, PSO-DVSF2-mt: An optimized mobile robot motion planning approach fortracking moving targets, International Journal of Robotics andAutomation, 37(5), 2022, 421–430.
  14. [14] C. De, Q. Yan, J. Zhou, and Y. Du, An adaptive localisationmethod based on DBSCAN algorithm in mobile robot,International Journal of Robotics and Automation, 38(4), 2023,323–333.
  15. [15] G.S. Ting, S.A. Zekavat, and O. Abdelkhalik, An introductionto Kalman filtering implementation for localization and trackingapplications, Handbook of Position Location: Theory, Practice,and Advances, 2nd ed.,, Hoboken, NJ, USA: Wiley, 2018,143–195.
  16. [16] F. Zheng and L. Shao, A winner-take-all strategy for improvedobject tracking, IEEE Transactions on Image Processing, 27,2018, 4302–4313.
  17. [17] Z. Pan, S. Liu, and W. Fu, A review of visual movingtarget tracking, Multimedia Tools and Applications, 76, 2017,16989–17018.
  18. [18] W. Jiaolong, W. Jihe, Z. Dexin, S. Xiaowei, and C. Guozhong,Kalman filtering through the feedback adaption of prior errorcovariance, Signal Processing, 152, 2018, 47–53.
  19. [19] B. Ge, H. Zhang, L. Jiang, Z. Li, and M.M. Butt, Adaptiveunscented Kalman filter for target tracking with unknowntime-varying noise covariance, Sensors-Basel, 19, 2019,1371.
  20. [20] Y. Xu, K. Xu, J. Wan, Z. Xiong, and Y. Li, Research on particlefilter tracking method based on Kalman filter, Proc. IEEEAdvanced Information Management,Communicates,Electronicand Automation Control Conference (IMCEC), 2018,1564–1568.
  21. [21] Y. Huang, Y. Zhang, P. Shi, Z. Wu, J. Qian, and J.A.Chambers, Robust Kalman filters based on Gaussian scalemixture distributions with application to target tracking, IEEETransactions on Systems, Man, and Cybernetics: Systems, 49,2017, 2082–2096.
  22. [22] S.R. Jondhale and R.S. Deshpande, Kalman filteringframework-based real time target tracking in wireless sensornetworks using generalized regression neural networks, IEEESensors Journal, 19, 2019, 224–233.
  23. [23] H. Yang, J. Wang, Y. Miao, Y. Yang, Z. Zhao, Z. Wang, and Q.Sun, Combining spatio-temporal context and Kalman filteringfor visual tracking, Mathematics, 7, 2019, 1059.
  24. [24] U. Jung, M. Cho, J. Woo, and C. Kim, Trajectory-trackingcontroller design of rotorcraft using an adaptive incremental-backstepping approach, Aerospace, 8, 2021, 248.
  25. [25] T. Ma, Q. Zhang, C. Chen, and S. Gao, Tracking of maneuveringstar-convex extended target using modified adaptive extendedKalman filter, IEEE Access, 8, 2020, 214030–214038.
  26. [26] P. Gu, Z. Jing, and L. Wu, Adaptive fading factor unscentedKalman filter with application to target tracking, AerospaceSystems, 4, 2021, 1–6.
  27. [27] D. Wang, H. Zhang, and B. Ge, Adaptive unscented Kalmanfilter for target tacking with time-varying noise covariancebased on multi-sensor information fusion, Sensors, 21, 2021,5808.
  28. [28] W. Zhou and J. Hou, A new adaptive high-order unscentedKalman filter for improving the accuracy and robustness oftarget tracking, IEEE Access, 7, 2019, 118484–118497.
  29. [29] J. Yin, Z. Yang, and Y. Luo, Adaptive tracking method fornon-cooperative continuously thrusting spacecraft, Aerospace,8, 2021, 244.
  30. [30] C. Liang, F. Wen, and Z. Wang, Trust-based distributedKalman filtering for target tracking under malicious cyberattacks, Information Fusion, 46, 2019, 44–50.
  31. [31] C.-C. Ji, P.C. Tuan, and H.Y. Jang, A recursive least-squaresalgorithm for on-line 1-D inverse heat conduction estimation,International Journal of Heat and Mass Transfer, 40, 1997,2081–2096.
  32. [32] M. LeBreux, M. D´esilets, and M. Lacroix, Fast inverseprediction of phase change banks in high temperature furnaceswith a Kalman filter coupled with a recursive least-squareestimator, International Journal of Heat and Mass Transfer,53, 2010, 5250–5260.
  33. [33] H. Qi, S. Wen, Y. Wang, Y. Ren, L. Wei, and L. Ruan,Real-time reconstruction of the time-dependent heat flux andtemperature distribution in participating media by using theKalman filtering technique, Applied Thermal Engineering, 157,2019, 113667.
  34. [34] X. Wang, D. Zhang, and L. Zhang, Estimation of movingheat source for an instantaneous three-dimensional heattransfer system based on step-renewed Kalman filter,International Journal of Heat and Mass Transfer, 163, 2020,120435.
  35. [35] X. Wang, D. Zhang, L. Zhang, and C. Jiang, Real-time thermalstates monitoring of absorber tube for parabolic trough solarcollector with non-uniform solar flux, International Journal ofEnergy Research, 42, 2018, 707–719.
  36. [36] C.-S. Hsieh and F.-C. Chen, Optimal solution of the two-stageKalman estimator, IEEE Transactions on Automatic Control,44, 1999, 194–199.
  37. [37] J. Keller and M. Darouach, Optimal two-stage Kalmanfilter in the presence of random bias, Automatica, 33, 1997,1745–1748.
  38. [38] C.-S. Hsieh, Robust two-stage Kalman filters for systems withunknown inputs, IEEE Transactions on Automatic Control,45, 2000, 2374–2378.115
  39. [39] S.L.V.A. Tummala and K.R. Inapakurthi, A two-stage Kalmanfilter for cyber-attack detection in automatic generation controlsystem, Journal of Modern Power Systems and Clean Energy,10, 2022, 50–59.
  40. [40] J. Zhang, G. Welch, G. Bishop, and Z. Huang, A two-stageKalman filter approach for robust and real-time power systemstate estimation, IEEE Transactions on Sustainable Energy,5, 2014, 629–636.
  41. [41] L. Xu, X.R. Li, and Z. Duan, Hybrid grid multiple-modelestimation with application to maneuvering target tracking,IEEE Transactions on Aerospace and Electronic Systems, 52,2016, 122–136.
  42. [42] M.M. Rana, N. Halim, M.M. Rahamna, and A. Abdelhadi,Position and velocity estimations of 2D-moving object usingKalman filter: literature review, Proc. 22nd International Conf.on Advanced Communication Technology (ICACT), 541–544.

Important Links:

Go Back