Zhi Qiu, Zeyu Xu, Min Luo, Simon X. Yang, and Tao Chen


  1. [1] L. Lynch, T. Newe, J. Clifford, J. Coleman, J. Walsh,and D. Toal, Automated ground vehicle (AGV) and sensortechnologies-a review, Proc. of the 12th InternationalConf. on Sensing Technology (ICST), Limerick, 2018,347–52.
  2. [2] G.K. Fourlas, G.C. Karras, and K.J. Kyriakopoulos, Sen-sors fault diagnosis in autonomous mobile robots usingobserver — Based technique, Proc. of the InternationalConf. on Control, Automation and Robotics, Singapore, 2015,49–54.
  3. [3] X. Wang, Z. Xia, X. Zhou, J. Wei, X. Gu, and H. Yan, Collision-free path planning for arc welding robot based on IDA-dealgorithm, International Journal of Robotics and Automation,37(6), 2022, 476–85.
  4. [4] Y. Liu, D. Han, L. Wang, and C.-Z. Xu, Novel topo-logical relationship solutions to the ALV multi-indegree–multi-outdegree task sequence planning problem, Interna-tional Journal of Robotics & Automation, 37(3), 2022,257–65.
  5. [5] X. Wu, Y. Li, H. Jia, G. Ma, and Y. Zhang, Multi-step optimalpredictive control for path correction of the AGV driven byhub motors, International Journal of Robotics & Automation,36(5), 2021, 304–15.
  6. [6] E. Khalastchi and M. Kalech, Fault detection and diagnosis inmulti-robot systems: A survey, Sensors (Basel), 19(18), 2019,4019, doi: 10.3390/s19184019.
  7. [7] M. Witczak, M. Mrugalski, M. Pazera, and N. Kukurowski,Fault diagnosis of an automated guided vehicle with torqueand motion forces estimation: A case study, ISA Transactions,104, 2020, 370–81.
  8. [8] O.N. S¸ahin and M.˙I.C. Dede, Model-based detection andisolation of the wheel slippage and actuator faults of aholonomic mobile robot, Industrial Robot: The InternationalJournal of Robotics Research and Application, (ahead-of-print),2022.
  9. [9] P.S. Pratama, A.V. Gulakari, Y.D. Setiawan, D.H. Kim,H.K. Kim, and S.B. Kim, Trajectory tracking andfault detection algorithm for automatic guided vehiclebased on multiple positioning modules, InternationalJournal of Control, Automation and Systems, 14(2), 2016,400–10.
  10. [10] Introduction to mobile robot control. (Amsterdam: Elsevier,2013).
  11. [11] F. Jia, Y.G. Lei, J. Lin , X. Zhou, and N. Lu, Deep neuralnetworks: A promising tool for fault characteristic miningand intelligent diagnosis of rotating machinery with massive158data, Mechanical Systems and Signal Processing, 72–73, 2016,303-15.
  12. [12] D. Zhuo-Hua, C. Zi-Xing, and Y. Jin-Xia, Fault diagnosisand fault tolerant control for wheeled mobile robots underunknown environments: A survey, Proc. of the IEEE Inter-national Conf. on Robotics and Automation, Barcelona, 2005,3428–33.
  13. [13] F. Ibrahim, B. Boussaid, and M.N. Abdelkrim, Fault detectionin wheeled mobile robot based machine learning, Proc. of the19th International Multi-Conf. on Systems, Signals & Devices(SSD), S´etif, 2022, 58–63.
  14. [14] K. Choi, J. Yi, C. Park, and S. Yoon, Deep learning for anomalydetection in time-series data: Review, analysis, and guidelines,IEEE Access, 9, 2021, 120043–65.
  15. [15] S. Khan and T. Yairi, A review on the application of deeplearning in system health management, Mechanical Systemsand Signal Processing, 107, 2018, 241–65.
  16. [16] L. Xia, S. Zhang, R. Shen, and J. Cui, Data association-based fault diagnosis of IMUs: Optimized DBN designand wheeled robot evaluation, IEEE Access, 8, 2020,59618–36.
  17. [17] X.H. Ding, D.D. Zhang, L.G. Zhang, L. Zhang, C.J. Zhang,and B. Xu, Fault detection for automatic guided vehicles basedon the two-tower model, Proc. of the 7th International Conf.on Intelligent Computing and Signal Processing (ICSP), Xi’an,2022, 511–5.
  18. [18] B.Y. Wang, D.Y. Huo, Y.Y. Kang, and J. Sun, AGVstatus monitoring and fault diagnosis based on CNN,Journal of Physics: Conference Series, 2281(1), 2022,012019.
  19. [19] X.H. Ding, D.D. Zhang, L.G. Zhang, L. Zhang, C.J. Zhang,and B. Xu, Fault detection for automatic guided vehicles basedon decision tree and LSTM, Proc. of the 5th InternationalConf. on System Reliability and Safety (ICSRS), Palermo,2021, 42–6.
  20. [20] Z. Miao, F. Zhou, X. Yuan, Y. Xia, and K. Chen,Multi-heterogeneous sensor data fusion method viaconvolutional neural network for fault diagnosis ofwheeled mobile robot, Applied Soft Computing, 129, 2022,109554.
  21. [21] Z. Miao, Y. Xia, F. Zhou, and X. Yuan, Fault diagnosis ofwheeled robot based on prior knowledge and spatial-temporaldifference graph convolutional network, IEEE Transactions onIndustrial Informatics, 19(5), 2023, 7055–65.
  22. [22] ¨O. G¨ultekin, E. Cinar, K. ¨Ozkan, and A. Yazıcı, Multisensorydata fusion-based deep learning approach for fault diagnosisof an industrial autonomous transfer vehicle, Expert Systemswith Applications, 200, 2022, 117055.
  23. [23] L. Van Der Maaten and G. Hinton, Visualizing data usingt-SNE, Journal of Machine Learning Research 9(11), 2008,2579–2605.
  24. [24] S. Arora, W. Hu, and P.K. Kothari, An analysis of the t-SNEalgorithm for data visualization, Proc. of the Conf. on LearningTheory, Stockholm, 2018, 1455–62.
  25. [25] Deep learning. (Cambridge, MA: MIT Press, 2016).
  26. [26] W. Zhang, G.L. Peng, C.H. Li, Y.H. Chen, and Z.J. Zhang,A new deep learning model for fault diagnosis with good anti-noise and domain adaptation ability on raw vibration signals,Sensors, 17(2), 2017, 425.
  27. [27] D.D. Peng, Z.L. Liu, H. Wang, Y. Qin, and L.M. Jia, A noveldeeper one-dimensional CNN with residual learning for faultdiagnosis of wheelset bearings in high-speed trains, IEEEAccess, 7, 2019, 10278–93.
  28. [28] A. Sherstinsky, Fundamentals of recurrent neuralnetwork (RNN) and long short-term memory (LSTM)network, Physica D: Nonlinear Phenomena, 404, 2020,132306.
  29. [29] W. Lu, J. Li, J. Wang, and L. Qin, A CNN-BiLSTM-AMmethod for stock price prediction, 33, 2021, 4741–53.
  30. [30] R. Dey and F.M. Salem, Gate-variants of gated recurrent unit(GRU) neural networks, Proc. of the IEEE 60th InternationalMidwest Symp. on Circuits and Systems (MWSCAS), Boston,MA, 2017, 1597–600.
  31. [31] Y.Lecun. LeNet-5, Convolutional Neural Networks, 20(5),2015, 14.

Important Links:

Go Back