HAPTICS AND VIRTUAL REALITY-BASED SURGERY SIMULATION FOR TRAINING—SOME PERSPECTIVES

Quan Shi,∗ Peter Xiaoping Liu,∗∗,∗∗∗∗ and Wenguo Hou∗∗∗

References

  1. [1] B. Chebbi, D. Lazaroff, and P.X. Liu, “A collaborative virtualhaptic environment for surgical training and tele-mentoring,”International Journal of Robotics and Automation, 22(1), 2007,69–78.
  2. [2] J. Vozenilek, J.S. Huff, and M.A. Reznek, “See one, do one, teachone: advanced technology in medical education,” AcademicEmergency Medicine, 11(11), 2004, 1149–1154.
  3. [3] X. Yan and P.X. Liu, “Kinematic analysis and design ofa haptic device for neurosurgery simulation,” InternationalJournal of Robotics and Automation, 38(1), 2023, 60–66, DOI:http://dx.doi.org/10.2316/J.2023.206-0770
  4. [4] M.A. Makary and M. Daniel, “Medical error—The third leadingcause of death in the US BMJ,” 353, 2016, i2139, DOI:http://dx.doi.org/10.1136/bmj.i2139.
  5. [5] T.V.N. Persaud, A History of Anatomy: The Post-VesalianEra. (Springfield, IL: Charles C Thomas Publisher, 1997).
  6. [6] S.L. Delp and F.E. Zajac, “Force-and moment-generatingcapacity of lower-extremity muscles before and after tendonlengthening,” Clinical Orthopaedics & Related Research, 284,1992, 247–259.
  7. [7] R.M. Satava, “Virtual reality surgical simulator: The firststeps,” Surgical Endoscopy, 7, 1993, 203–205.
  8. [8] M. Hayashibe, N. Suzuki, M. Hashizume, K. Konishi, and A.Hattori, “Robotic surgery setup simulation with the integrationof inverse-kinematics computation and medical imaging,”Computer Methods & Programs in Biomedicine, 83(1), 2013,63–72.
  9. [9] P.A Kenney, M.F Wszolek, JJ, Gould, J.A Libertino, and AMoinzadeh., “Validation of the DV-Trainer®, a novel virtualreality simulator for robotic surgery,” Journal of Urology,181(4), 2009, 792–792.
  10. [10] C. Perrenot, M. Perez, N. Tran, J.P. Jehl, J. Felblinger, L.Bresler, and J. Hubert, “The virtual reality simulator DV-trainer is a valid assessment tool for robotic surgical skills,”Surgical Endoscopy, 26(9), 2012, 2587–2593.
  11. [11] D.J. Williams, “Comprehensive healthcare simulation: neuro-surgery,” Computing Reviews, 60(9), 2019, 345–345.
  12. [12] S. Delorme, D. Laroche, R. Diraddo, and R.F. Del Maestro,“NeuroTouch: A physics-based virtual simulator for cranialmicroneurosurgery training,” Neurosurgery, 711, 2012, 32–42.
  13. [13] W. Hou, P.X. Liu, and M. Zheng, “A new model of softtissue with constraints for interactive neurosurgical simulation,”Computer Methods and Programs in Biomedicine, 175, 2019,35–43
  14. [14] Y. Zou, P. X. Liu, Q. Cheng, P. Lai, and C. Li, “A newdeformation model of biological tissue for surgery simulation,”IEEE Transactions on Cybernetics, 47(11), 2017, 3494–3503.
  15. [15] R. Sharpe, V. Koval, J. Ronco, P. Dodek, H. Wong, J. Shepherd,J.M. FitzGerald, and N.T. Ayas, “The impact of prolongedcontinuous wakefulness on resident clinical performance in theintensive care unit: A patient simulator study,” Critical CareMedicine, 38(3), 2010, 766–70.
  16. [16] M.J. Musacchio, A.P. Smith, C. A. McNeal, L. Munoz, D.M.Rothenberg, K.A. von Roenn, and R.W. Byrne, “Neurocriticalcare skills training using a human patient simulator,”Neurocritical Care, 13(2), 2010, 169–75.
  17. [17] N. Choudhury, N. Gelinasphaneuf, S. Delorme, and R DelMaestro, “Fundamentals of neurosurgery: Virtual realitytasks for training and evaluation of technical skills,” WorldNeurosurgery, 80(5), 2013, 9–19.
  18. [18] G. Rosseau, J. Bailes, R. del Maestro, A. Cabral, N. Choudhury,O. Comas, P. Debergue, G. De Luca, J. Hovdebo, and D.Jiang, “The Development of a virtual simulator for trainingneurosurgeons to perform and perfect endoscopic endonasaltranssphenoidal surgery,” Neurosurgery, 73(4), 2013, 85–93.
  19. [19] F.E. Alotaibi, G.A. Alzhrani, A.J. Sabbagh, H. Azarnoush,A. Winkler-Schwartz, and R.F. Del Maestro, “Neurosurgicalassessment of metrics including judgment and dexterity usingthe virtual reality simulator neurotouch (NAJD metrics),”Surgical Innovation, 22(6), 2015, 636–642.
  20. [20] A. T. Stadie, R. A. Kockro, R. Reisch, A. Tropine, S. Boor, P.Stoeter, and A. Perneczky, “Virtual reality system for planningminimally invasive neurosurgery,” Journal of Neurosurgery,108(2), 2008, 382–394
  21. [21] A. Alaraj, T. Charbel, D. Birk, P.P. Banerjee, S. Rizzi, J.Sorenson, K. Foley, K. Slavin, and B. Roitberg, “Role ofcranial and spinal virtual and augmented reality simulationusing ImmersiveTouch modules in neurosurgical training,”Neurosurgery,72(1), 2013,115–23.
  22. [22] Y. Zou and P.X. Liu, “A new deformation simulation algorithmfor elastic-plastic objects based on splat primitives,” Computersin Biology and Medicine, 83, 2017, 84–93.
  23. [23] Q.Q. Cheng, P.X. Liu, P.H. Lai, S. Xu, and Y. Zou,“A novel haptic interactive approach to simulation of9surgery cutting based on mesh and meshless,” Journalof the Healthcare Engineering, 2018, 2018, 9204949, DOI:http://dx.doi.org/10.1155/2018/9204949.
  24. [24] F. E. Alotaibi, G. Al Zhrani, K. Bajunaid, A. Winkler-Schwartz,H. Azarnoush, and M Mullah, “Assessing neurosurgicalpsychomotor performance: Role of virtual reality simulators:Current and future potential,” SOJ Neurology, 2(1), 2015, 1–7.
  25. [25] H. Azarnoush, G. Alzhrani, A. Winkler-Schwartz, F. Alotaibi,N. Gelinas-Phaneuf, V. Pazos, N. Choudhury, J. Fares, R.DiRaddo, and R.F. Del Maestro, “Neurosurgical virtual realitysimulation metrics to assess psychomotor skills during braintumor resection,” International Journal of Computer AssistedRadiology & Surgery, 10(5), 2015, 603–618.
  26. [26] F.E Alotaibi, G.A. AlZhrani, M.A.S. Mullah, A.J. Sabbagh,H. Azarnoush, A. Winkler-Schwartz, and R.F. Del Maestro,“Assessing bimanual performance in brain tumor resectionwith neurotouch, a virtual reality simulator,” Neurosurgery,11(1), 2015, 89–98.
  27. [27] N. Choudhury, N. Gelinasphaneuf, S. Delorme, and R DelMaestro, “Fundamentals of neurosurgery: Virtual realitytasks for training and evaluation of technical skills,” WorldNeurosurgery, 80(5), 2013, 9–19.
  28. [28] S. Rai, C. Mancarella, and A.H. Goel, “Brain tumor interfacedissection technique with surgical blade from laboratory toneurosurgical operating room,” World Neurosurgery, 100, 2017,601–606.
  29. [29] Y. Zou, P.X. Liu, D. Wu, X. Yang, and S. Xu, “Point primitivesbased virtual surgery system,” IEEE Access, 7(1), 2019, 46306–46316
  30. [30] Y. Zou and P. X. Liu, “A high-resolution model for soft tissuedeformation based on point primitives,” Computer Methodsand Programs in Biomedicine, 148, 2017, 113–121.
  31. [31] A. Nealen, M. Matthias, R. Keiser, E. Boxerman, and M.Carlson, “Physically based deformable models in computergraphics,” Computer Graphics Forum, 25(4), 2006, 809–836.
  32. [32] H. Ying, P. X. Liu, and W. Hou, “A deformation model ofpulsating brain tissue for neurosurgery simulation,” ComputerMethods and Programs in Biomedicine, 218, 2022, 106729,DOI: http://dx.doi.org/10.1016/j.cmpb.2022.106729.
  33. [33] J. Cai, F. Lin, and H. S. Seah, Graphical Simulation ofDeformable Models. (Cham: Springer, 2016).
  34. [34] Y. Duan, W. Huang, H. Chang, W. Chen, J. Zhou, S. K. Teo, Y.Su, C. K. Chui, and S. Chang, “Volume preserved mass–springmodel with novel constraints for soft tissue deformation,” IEEEJournal of Biomedical and Health Informatics, 20(1), 2014,268–280.
  35. [35] K. Waters and D. Terzopoulos, “A physical model of facialtissue and muscle articulation,” Proceeding IEEE InternationalConference Visualization in Biomedical Computing, Atlanta,GA, 1990, 77–82.
  36. [36] W. Mollemans, F. Schutyser, J. Van Cleynenbreugel, and P.Suetens, “Tetrahedral mass spring model for fast soft tissuedeformation,” Information Systems, 2003, 145–154.
  37. [37] C. E. Etheredge, A Parallel Mass-Spring Model for SoftTissue Simulation with Haptic Rendering in CUDA, DoctoralDissertation, University of Twente, Enschede, 2010.
  38. [38] Q. Chen, P. X. Liu, P. Lai, and S. Xu, “Modelling of soft tissuecutting in virtual surgery simulation: A literature review,”International. Journal Robotics and Automation, 32(3), 2017,243–255.
  39. [39] J. Zhou, P.X. Liu, and C. Li, “A meshless deformationsimulation method for virtual surgery,” International JournalRobotics and Automation, 33(2), 2018, 118–126.
  40. [40] A. Henriques, B. W¨unsche, and S. Marks, “An investigationof meshless deformation for fast soft tissue simulationin virtual surgery applications” International Journal ofComputer Assisted Radiology and Surgery Supplement, 2, 2007,169–171.
  41. [41] Y. Bao, D. Wu, Z. Yan, and Z. Du, “A new hybrid viscoelasticsoft tissue model based on meshless method for haptic surgicalsimulation,” Open Biomedical Engineering Journal, 7(1), 2013,116–124.
  42. [42] K. Miller, A. Wittek, G. Joldes, A. Horton, T. Dutta-Roy,J. Berger, and L. Morriss, “Modelling brain deformations forcomputer-integrated neurosurgery,” International Journal forNumerical Methods in Biomedical Engineering, 26(1), 2010,117–138.
  43. [43] Q. Cheng, Peter X. Liu, P. Lai, and Y.N. Zou, “An interactivemeshless cutting model for nonlinear viscoelastic soft tissue insurgical simulators,” IEEE Access, 5, 2017, 16359–16371.
  44. [44] G. Irving, J. Teran, and R. Fedkiw, “Invertible finite elementsfor robust simulation of large deformation,” in Proceeding ofthe ACM SIGGRAPH/Eurographics Symposium on ComputerAnimation, Grenoble, 2004, 131–140.
  45. [45] E. Sifakis and J. Barbic, “FEM simulation of 3D deformablesolids: A practitioner’s guide to theory, discretization and modelreduction,” in Proceeding of the International Conference onComputer Graphics and Interactive Techniques, Los Angeles,CA, 2012, 1–50.
  46. [46] W. Hou, P.X. Liu, M. Zheng, and S. Liu, “A new deformationmodel of brain tissues for neurosurgical simulation,” IEEETrans. Instrumentation and Measurement, 69(4), 2020,1251–1258.
  47. [47] W. Hou and P.X. Liu, “Modelling of connective tissue damagefor blunt dissection of brain tumor in neurosurgery simulation,”Computers in Biology and Medicine, 120, 2020, 103696.
  48. [48] M. Bronielsen and S. Cotin, “Real-time volumetric deformablemodels for surgery simulation using finite elements andcondensation,” Eurographics, 15(3), 1996, 57–66.
  49. [49] G. Picinbono, J. C. Lombardo, H. Delingette, and N. Ayache,“Improving realism of a surgery simulator: linear anisotropicelasticity, complex interactions and force extrapolation,”Computer Animation & Virtual Worlds, 13(3), 2010, 147–167.
  50. [50] M. M¨uller and M. H. Gross, “Interactive virtual materials,”in Proceeding of the Graphics Interface Conference, Ontario,2004, 239–246.
  51. [51] G. Picinbono, J. C. Lombardo, H. Delingette, and N. Ayache,“Anisotropic elasticity and force extrapolation to improverealism of surgery simulation,” in Proceeding of the IEEEInternational Conference on Robotics and Automation, SanFrancisco, CA, 2000, 596–602.
  52. [52] P. X. Liu, W. Zheng, and B. Chebbi, “Surgical simulationwith high-fidelity haptic feedback,” International Journal ofRobotics and Automation, 22(1), 2007, 59–68.
  53. [53] H. Delingette, S. Cotin, and N. Ayache, “A hybrid elastic modelallowing real-time cutting, deformations and force-feedbackfor surgery training and simulation,” Visual Computer, 16(8),2000, 437–452.
  54. [54] M. Marchal, J. Allard, C. Duriez, and S Cotin, “Towardsa framework for assessing deformable models in medicalsimulation,” Biomedical Simulation, 7, 2008, 176–184.
  55. [55] F. Faure, C. Duriez, H. Delingette, J. Allard, B. Gilles, S.Marchesseau, H. Talbot, H. Courtecuisse, G. Bousquet, I.Peterlik, and S. Cotin, SOFA: A Multi-Model Framework forInteractive Physical Simulation. (Berlin: Springer, 2012).
  56. [56] Y. Zou, P. Huang, L. Gu, J. Wu, Z. Yan, S. Lv, F. Chen, J. Song,H. Zhou, and Qi Duan, “Deformation modeling using globalmedial representation structures and evaluation by biset meshmatching,” in Proceeding of the IEEE International Conferenceon Multimedia and Expo, 2008, 937–940.
  57. [57] G. Picinbono, H. Delingette, and N. Ayache, “Real-timelarge displacement elasticity for surgery simulation: non-linear tensor-mass model,” Proceeding of the InternationalConference on Medical Image Computing and Computer-Assisted Intervention, , Berlin, 2000, 643–652.
  58. [58] G. Picinbono, H. Delingette, and N. Ayache, “Non-linearanisotropic elasticity for real-time surgery simulation,”Graphical Models, 65(5), 2003, 305–321.
  59. [59] k. Miller, G. Joldes, D. Lance, and A. Wittek, “Total Lagrangianexplicit dynamics finite element algorithm for computingsoft tissue deformation,” International Journal for NumericalMethods in Biomedical Engineering, 23(2), 2010, 121–134.
  60. [60] J. Allard, H. Courtecuisse, and F. Faure, “Implicit fem solveron GPU for interactive deformation simulation,” in GPUComputing Gems, Jade Edition. (Amsterdam: Elsevier, 2012,281–294).
  61. [61] H. Courtecuisse, J. Allard, P. Kerfriden, S.P.A. Bordas, S.Cotin, and C. Duriez, “Real-time simulation of contact andcutting of heterogeneous soft-tissues,” Medical Image Analysis,18(2), 2014, 394–410.10
  62. [62] T. Liu, A.W. Bargteil, J.F. O’Brien, and L Kavan, “Fastsimulation of mass-spring systems,” ACM Transactions onGraphics, 32(6), 2013, 1–7.
  63. [63] H. Wang and Y. Yang, “Descent methods for elastic bodysimulation on the GPU,” ACM Transactions on Graphics,35(6), 2016, 1–10.
  64. [64] J. Berkley, G. Turkiyyah, D. Berg, M. Ganter, and S. Weghorst,“Real-time finite element modeling for surgery simulation:an application to virtual suturing,” IEEE Transactionson Visualization and Computer Graphics, 10(3), 2004,314–325.
  65. [65] M. Bro-Nielsen, “Finite element modeling in surgery simula-tion,” Proceedings of the IEEE, 86(3), 1998, 490–503.
  66. [66] O. Comas, Z. A. Taylor, J. Allard, S. Ourselin, S. Cotin, and J.Passenger, “Efficient nonlinear FEM for soft tissue modellingand its GPU implementation within the open source frameworkSOFA,” Biomedical Simulation, 12, 2008, 28–39.
  67. [67] J. Bender, M. M¨uller, M. A. Otaduy, M. Teschner, and M.Macklin, “A survey on position-based simulation methods incomputer graphics,” Computer Graphics Forum, 33(6), 2014,228–251.
  68. [68] C. Jiang, C. Schroeder, J. Teran, A. Stomakhin, and A.Selle, “The material point method for simulating continuummaterials,” in Proceeding of the ACM Siggraph, Anaheim, CA,2016, 1–52.
  69. [69] Y. Hu, Y. Fang, Z/ Ge, et al., A moving least squares materialpoint method with displacement discontinuity and two-wayrigid body coupling, ACM Transactions on Graphics, 37(4),2018, 1-14
  70. [70] A. W. Bargteil and T. Shinar, “An introductionto physics-based animation,” in Proceeding of theSA ‘20: SIGGRAPH Asia, Seoul, 2020, 1–57, DOI:http://dx.doi.org/10.1145/3415263.3419147.
  71. [71] Q. Shi and P.X. Liu, “A new model of electrosurgical tissuedamage for neurosurgery simulation,” Computer Methodsand Programs in Biomedicine, 254, 2024, 1–11, DOI:http://dx.doi.org/10.1016/j.cmpb.2024.108320.
  72. [72] W. Shi, P.X. Liu, and M. Zheng, “Bleeding simulation withimproved visual effects for surgical simulation systems,” IEEETrans. Systems, Man and Cybernetics: Systems, 51(2), 2018,686–695
  73. [73] L. Tang, P. X. Liu, and W. Hou, “Simulation of softtissue deformation under physiological motion based oncomplementary dynamic method,” Computer Methodsand Programs in Biomedicine, 243, 2024, 107851, DOI:http://dx.doi.org/10.1016/j.cmpb.2023.107851021.
  74. [74] P. Sun and P.X. Liu, “Simulating blood accumulation withimproved SPH in surgical simulation system,” Interna-tional Journal Medical Robotics, 20(4), 2024, 1–10, DOI:http://dx.doi.org/10.1002/rcs.2663.
  75. [75] P. Wriggers, Computational Contact Mechanics.(Hoboken, NJ:Wiley, 2002).
  76. [76] S. F. Johnsen, Z. A. Taylor, L. Han, M.J. Clarkson, D.J.Hawkes, and S. Ourselin, “Detection and modelling of contactsin explicit finite-element simulation of soft tissue biomechanics,”Computer Assisted Radiology and Surgery, 10(11), 2015,1873–1891.
  77. [77] M. Tang, D. Manocha, M.A. Otaduy, and R. Tong, “Continuouspenalty forces,” ACM Transactions on Graphics, 31(4), 2012,1–9.
  78. [78] K. Qian, T. Jiang, M. Wang, X. Yang, and J. Zhang,“Energized soft tissue dissection in surgery simulation,”Computer Animation and Virtual Worlds, 27(3–4), 2016,280–289.
  79. [79] M. M¨uller, B. Heidelberger, M. Hennix, and J. Ratcliff,“Position based dynamics,” Journal of Visual Communication& Image Representation, 18(2), 2016, 109–118.
  80. [80] M. M¨uller, N. Chentanez, T.-Y. Kim, and M. Macklin,“Strain based dynamics,” in Proceeding of the Eurographics/ACM SIGGRAPH Symposium on Computer Animation, 2014,149–157.
  81. [81] T. Kugelstadt and E. Sch¨omer, “Position and orientationbased cosserat rods,” in Proceeding of the Eurographics/ACM SIGGRAPH Symposium on Computer Animation,Copenhagen, 2016, 169–178.
  82. [82] M. Camara, E. Mayer, A. Darzi, and P Pratt, “Soft tissuedeformation for surgical simulation: A position-based dynamicsapproach,” Computer Assisted Radiology and Surgery, 11(6),2016, 919–928.
  83. [83] Y. Peng, Y. Ma, Y. Wang, and J Shan, “The application ofinteractive dynamic virtual surgical simulation visualizationmethod,” Multimedia Tools and Applications, 76(23), 2017,25197–25214.
  84. [84] Y. Sui, J. Pan, H. Qin, H. Liu, and Y. Lu, “Real-time simulationof soft tissue deformation and electrocautery proceduresin laparoscopic rectal cancer radical surgery,” InternationalJournal of Medical Robotics and Computer Assisted Surgery,13(4), 2017, e1827.
  85. [85] J. Bender, M. M¨uller, and M. Macklin, Position-basedsimulation methods in computer graphics, Eurographics(tutorials), 2015, (in press).
  86. [86] W. Shi, P. X. Liu, and M. Zheng, “Cutting procedures withimproved visual effects and haptic interaction for surgicalsimulation systems,” Computer Methods and Programs inBiomedicine, 184, 2020, 105270.
  87. [87] W. Shi, P.X. Liu, and M. Zheng, “A new volumetric geometricmodel for cutting procedures in surgical simulation,” ComputerMethods and Programs in Biomedicine, 178, 2019, 77–84
  88. [88] F. Pervin and W. Chen, “Dynamic mechanical response ofbovine gray matter and white matter brain tissues undercompression,” Journal of Biomechanics, 42(6), 2009, 731–735.
  89. [89] B. Rashid, M. Destrade, & M.D. Gilchrist, “Mechanicalcharacterization of brain tissue in simple shear at dynamicstrain rates,” Journal of the Mechanical Behavior of BiomedicalMaterials, 28, 2013, 71–85.
  90. [90] X. Chen, K. Sase, A. Konno, T. Tsujita, and S. Komizunai,“A simple damage and fracture model of brain parenchyma forhaptic brain surgery simulations,” Journal of BiomechanicalScience and Engineering, 16, 2016, 3–23.
  91. [91] W. Zhang, F. Wu, L. Feng, S.B. Yu, and C. Wu, “Differences inthe viscoelastic features of white and grey matter in tension,”Journal of Biomechanics, 49(16), 2016, 3990–3995.
  92. [92] D. C. Taylor, J. R. Dalton Jr, A.V. Seaber, and W.E. GarrettJr, “Experimental muscle strain injury: early functional andstructural deficits and the increased risk for reinjury,” AmericanJournal of Sports Medicine, 21(2), 2023, 190–194.
  93. [93] A. R. Kemper, A. C. Santago, J. D. Stitzel, J.L. Sparks, andS.M. Duma, “Biomechanical response of human liver in tensileloading,” Annals of Advances in Automotive Medicine, 54,2010, 15–26.
  94. [94] A.N. Annaidh, K. Bruy`ere, M. Destrade, M.D. Gilchrist, andM. Ott´enio, “Characterization of the anisotropic mechanicalproperties of excised human skin,” Journal MechanicalBehavior Biomedical Materials, 5(1), 2012, 139–148.
  95. [95] G. Franceschini, D. Bigoni, P. Regitnig, and G.A. Holzapfel,“Brain tissue deforms similarly to filled elastomers and followsconsolidation theory.” Journal of the Mechanics and Physicsof Solids, 54(12), 2006, 2592–2620.
  96. [96] C. Forest, H. Delingette, and N. Ayache, “Removing tetrahedrafrom manifold tetrahedralisation: application to real-timesurgical simulation,” Medical Image Analysis, 9(2), 2005,113–122.
  97. [97] M. Nakayama, K. Yamada, A. Konno, and, M. Uchiyama,Development and verification of a separation model for bluntdissection simulation of a brain surgery, in Proceedings of theJSME Annual Conference on Robotics and Mechatronics, 2009,1A2–K03, http://dx.doi.org/10.1299/jsmermd.2009. 1A2-K03 1.
  98. [98] X. Chen, M. Nakayama, A. Konno, X. Jiang, S. Abiko,and M. Uchiyama, “Simulation of surgical dissection using adynamic deformation model,” in Proceeding of the IEEE/SICEInternational Symposium on System Integration, Sendai, 2010,90–95.
  99. [99] M. Nakayama, S. Abiko, X. Jiang, A. Konno, and M.Uchiyama, “Stable soft-tissue fracture simulation for surgerysimulator,” Journal of Robotics and Mechatronics, 23, 2011,589–597.
  100. [100] K. Sase, A. Fukuhara, T. Tsujita, and A. Konno, “GPU-accelerated surgery simulation for opening a brain fissure,”Robomech Journal, 2(1), 2015, 17.11
  101. [101] X. Chen, K. Sase, A. Konno, and T. Tsujita, “Experimentaland numerical analysis of damage fracture mechanics ofbrain parenchyma,” in Proceeding of the IEEE InternationalConference on Robotics and Biomimetics (ROBIO), Qingdao,2016, 485–490, doi: 10.1109/ROBIO.2016.7866369.
  102. [102] X. Chen, K. Sase, K., T. Tsujita, and A. Konno, “Numericalmodel of connective tissue for splitting brain fissure simulation,”in Proceeding of the IEEE/SICE International Symposium onSystem Integration, Paris, 2019, 118–123.
  103. [103] J. Lemaitre, “A continuous damage mechanics model for ductilsfracture,” Transaction of the ASME, Journal of EngineeringMaterials and Technology, 107(1), 1985, 83–89.
  104. [104] F. Lauro, B. Bennani, P. Drazetic, J. Oudin, and X. Ni,“Ductile damage and fracture finite element modelling ofelasto-viscoplastic voided materials,” Computational MaterialsScience, 7(3), 1997, 295–307.
  105. [105] S. Lee and F. Pourboghrat, “Finite element simulation ofthe punchless piercing process with Lemaitre damage model,”International Journal of Mechanical Sciences, 47(11), 2005,1756–1768.
  106. [106] J. Hegemann, C. Jiang, C. Schroeder, and J.M. Teran, “A levelset method for ductile fracture,” in Proceeding of the ACMSiggraph/Eurographics Symposium on Computer Animation,Anaheim, CA, 2013, 193–201.
  107. [107] L. Xue and T. Wierzbicki, “Ductile fracture initiationand propagation modeling using damage plasticity theory,”Engineering Fracture Mechanics, 75(11), 2008, 3276–3293.
  108. [108] Z. Qin, K. Qian, S. Liang, Q. Zheng, J. Peng, and Y.Tai, “Neural radiance fields-based multi-view endoscopic scenereconstruction for surgical simulation,” International JournalCARS 19, 2024, 951–960.
  109. [109] K. Ponchant, D.-A. Nguyen, M. Prsa, M. Beghetti, T.Sologashvili, and J.P. Vall´ee, “Three-dimensional printing andvirtual reconstruction in surgical planning of double-outletright ventricle repair,” JTCVS Techniques, 17, 2023, 138–150.
  110. [110] E.D. Gomez, H.M. Husin, K.R. Dumon, N.N. Williams,and K.J. Kuchenbecker, “Simulation training with hapticfeedback of instrument vibrations reduces resident workloadduring live robot-assisted sleeve gastrectomy,” SurgicalEndoscopy, 39, 2024, 1523–1535, http://dx.doi.org/10.1007/s00464-024-11459-6.
  111. [111] M.L. Ryan, S. Wang, and S.R. Pandya, “Integrating artificialintelligence into the visualization and modeling of three-dimensional anatomy in pediatric surgical patients,” JournalPediatric Surgery, 59(12), 2024, 161629.
  112. [112] C. Zhou, X. Wang, and Z. Wu, “A novel hetero-geneous deformable surface model based on elasticity,”Computer Aided Geometric Design, 115, 2024, 102402,http://dx.doi.org/10.1016/j.cagd.2024.102402.
  113. [113] G. A. Nunes, K. A. Mendes, E. Schmidt, K.C. Kim, T.F.Valvecchi, N.S. Mansur, R. Zambelli, C. de Cesar Netto,“Biomechanical consequences of Zadek osteotomy in insertionalachilles tendinopathy: A virtual surgical simulation study,”Foot and Ankle Surgery, 30(8), 2024, 662–666.
  114. [114] A. Shahrezaei, M. Sohani, S. Taherkhani, and S.Y. Zarghami,“The impact of surgical simulation and training technologieson general surgery education,” BMC Medical Education,24(1), 2024, 1297, DOI: http://dx.doi.org/10.1186/s12909-024-06299-w.
  115. [115] E. W. Riddle, D. Kewalramani, M. Narayan, and D. B. Jones,“Surgical simulation: Virtual reality to artificial intelligence,”Current Problems in Surgery, 61(11), 2024, 101625, DOI:http://dx.doi.org/10.1016/j.cpsurg.2024.101625.
  116. [116] C. Lanser, D. M. Fisher, L. Kasrai, K. Fisher, and D.J.Podolsky, “Development and preliminary evaluation of a softtissue microtia simulator,” Journal of Craniofacial Surgery,35(6), 2024, 1688–1691.

Important Links:

Go Back