Bayesian Image Understanding: From Images to Virtual Forests

T. Caelli, L. Cheng, and Q. Fang


  1. [1] R. Hartley & A. Zisserman, Multiple view geometry in computervision (Cambridge: Cambridge University Press, 2000).
  2. [2] R. Hall, Photogrammetry and photo interpretation (lecturenotes of Forestry Engineering 201). University of Alberta,Edmonton, 1996.
  3. [3] F.A. Gougeon, Comparison of multispectral classificationschemes for tree crowns individually delineated on high spatialresolution meis images, Canadian Journal of Remote Sensing,21(1), 1995, 1–9.
  4. [4] A.J. Pinz, A computer vision system for the recognition oftrees in aerial photographs, in J.C. Tilton (Ed.), Multisourcedata integration in remote sensing, (Washington, DC: NASA, 1991).
  5. [5] F.A. Gougeon, Individual tree identification from high resolution meis images, in D.G. Leckie & M.D. Gillis (Eds.), Proc.Int. Forum on Airborne Multispectral Scanning for Forestryand Mapping, (Chalk River, ON: Forestry Canada, 1993).
  6. [6] F.A. Gougeon, A valley following approach to the automaticdelineation of individual tree crowns in high spatial resolutionmeis images, Unpublished manuscript, 1994.
  7. [7] M. Wulder, K.O. Niemann, & D. Goodenough, Local maximum filtering for the extraction of tree locations and basal area from high spatial resolution imagery, Remote Sensing of Environment, 73, 2000, 103–114. doi:10.1016/S0034-4257(00)00101-2
  8. [8] M. Wulder, K.O. Niemann, & D. Goodenough, Error reductionmethods for local maximum filtering, Proc. 22nd Symp. of theCanadian Remote Sensing Society, Victoria, BC, 2000, 67–74.
  9. [9] D. Murgu, Individual tree detection and localization in aerialimagery, master’s thesis, Department of Computer Science,University of British Columbia, Vancouver, 1996.
  10. [10] R.J. Pollock, The automatic recognition of individual treesin aerial images of forests based on a synthetic tree crownimage model, doctoral diss., University of British Columbia,Vancouver, 1996.
  11. [11] R.J. Pollock, A model-based approach to automatically locating tree crowns in high spatial resolution images, in J. Desachy (Ed.), Image and Signal Processing for Remote Sensing, SPIE 2315, (Bellingham, Washington, USA: The International Society of Optical Engineers, 1994), 526–537.
  12. [12] M. Larsen & M. Rudemo, Using ray-traced templates to findindividual trees in aerial photos, Proc. 10th ScandinavianConf. on Image Analysis, vol. 2, Lappeenranta, Finland, 1997,1007–1014.
  13. [13] B. Gidas, A renormalization group approach to image processing problems, IEEE Trans. on Pattern Analysis and Machine Intelligence, PAMI-11(2), 1989, 164–180. doi:10.1109/34.16712
  14. [14] M. Unser & M. Eden, Multiresolution feature extraction andselection for texture segmentation, IEEE Trans. on PatternAnalysis and Machine Intelligence, 11, 1989, 717–728. doi:10.1109/34.192466
  15. [15] C. Bouman & B. Liu, Multiple resolution segmentation of textured images, IEEE Trans. on Pattern Analysis and Machine Intelligence, 13(2), 1991, 99–113. doi:10.1109/34.67641
  16. [16] M. Luettgen, W. Karl, A. Willsky, & R. Tenney, Multiscalerepresentations of Markov random fields, IEEE Trans. onSignal Processing, 41(12), 1993, 3377–3395. doi:10.1109/78.258081
  17. [17] C. Bouman & M. Shapiro, A multiscale random field modelfor Bayesian image segmentation, IEEE Trans. on ImageProcessing, 3(2), 1994, 162–177. doi:10.1109/83.277898
  18. [18] H. Cheng & C.A. Bouman, Multiscale Bayesian segmentationusing a trainable context model, IEEE Trans. on ImageProcessing, 10(2), 2001, 460–474.
  19. [19] J. Rissanen, A universal prior for integers and estimation byminimum description length, Annals of Statistics, 11, 1983,416–431. doi:10.1214/aos/1176346150
  20. [20] W.J. Christmas, J. Kittler, & M. Petrou, Structural matchingin computer vision using probabilistic relaxation, IEEE Trans.on Pattern Analysis and Machine Intelligence, 17(8), 1995,749–764. doi:10.1109/34.400565
  21. [21] D. Scharstein & R. Szeliski, A taxonomy and evaluation ofdense two-frame stereo correspondence algorithms, International Journal of Computer Vision, 47(1/2/3), 2002, 7–42. doi:10.1023/A:1014573219977
  22. [22] D. Higdon, J. Bowsher, V. Johnson, T. Turkington, D. Gilland,& R. Jaszczak, Fully Bayesian estimation of Gibbs hyperparameters for emission computed tomography data, IEEE Trans. on Medical Imaging, 16, 1997, 516–526. doi:10.1109/42.640741
  23. [23] S. Saquib, C. Bouman, & K. Sauer, Ml parameter estimation for Markov random fields, with applications to Bayesian tomography, IEEE Trans. on Image Processing, 7(7), 1998, 1029–1044. doi:10.1109/83.701163
  24. [24] W.R. Gilks, S. Richardson, & D.J. Spiegelhalter, Markov chainMonte Carlo in practice (London: Chapman and Hall, 1996).
  25. [25] J. Yedidia, W.T. Freeman, & Y. Weiss, Understanding beliefpropagation and its generalizations, in G. Lakemeyer (Ed.),Exploring Artificial Intelligence in the New Millennium, (SanFrancisco, USA: Morgan Kaufmann Publishers, 2003), 239-263.
  26. [26] L. Cheng & T. Caelli, Graphical models for stereo workshop ongenerative-model based vision, Computer Vision and PatternRecognition, Washington Workshop, DC: June, 2004 (in Press).
  27. [27] P. Prusinkiewicz & A. Lindemayer, The algorithmic beauty ofplants, 2nd ed. (New York: 2 Springer Verlag, 1996).
  28. [28] L. Rabiner, A tutorial on hidden Markov models and selectedapplications in speech recognition, Proc. IEEE, 77(2), 1989,257–285. doi:10.1109/5.18626
  29. [29] S. Fine, Y. Singer, & N. Tishby, The hierarchical hiddenMarkov model: Analysis and applications, Machine Learning,32(1), 1998, 41–62. doi:10.1023/A:1007469218079
  30. [30] K. Murphy, Hierarchical HMMs, CS Division, Notes, University of California at Berkeley, 2001.

Important Links:

Go Back