Active Sensing of Visual and Tactile Stimuli by Brain-based Devices

A.K. Seth, J.L. McKinstry, G.M. Edelman, and J.L. Krichmar

References

  1. [1] A. Treisman, Feature binding, attention and object perception, Philosophical Trans. Royal Society of London Series B: Biological Sciences, 353 (1373), 1998, 1295–1306. doi:10.1098/rstb.1998.0284
  2. [2] N. Almassy, G.M. Edelman, & O. Sporns, Behavioral constraints in the development of neuronal properties: A cortical model embedded in a real-world device, Cerebral Cortex, 8 (3), 1998, 346–361. doi:10.1093/cercor/8.4.346
  3. [3] G.M. Edelman, G.N. Reeke, W.E. Gall, G. Tononi, D. Williams, & O. Sporns, Synthetic neural modeling applied to a real-world artifact, Proc. National Academy Sciences of the United States of America, 89 (12), 1992, 7267–7271. doi:10.1073/pnas.89.15.7267
  4. [4] J.L. Krichmar & G.M. Edelman, Machine psychology: Autonomous behavior, perceptual categorization and conditioning in a brain-based device, Cerebral Cortex, 12 (8), 2002, 818–830. doi:10.1093/cercor/12.8.818
  5. [5] A.K. Seth, J.L. McKinstry, G.M. Edelman, & J.L. Krichmar, Visual binding through reentrant connectivity and dynamic synchronization in a brain-based device, forthcoming in Cerebral Cortex.
  6. [6] G.M. Edelman, Neural Darwinism: The theory of neuronal group selection (New York: Basic Books, 1987).
  7. [7] H.P. Moravec, The Stanford cart and the CMU rover, Proc. IEEE, 71 (6), 1983, 872–884.
  8. [8] N. Nilsson, Shakey the robot, SRI International, Menlo Park, CA Technical Note 323, April 1984.
  9. [9] O. Sporns & W.H. Alexander, Neuromodulation and plasticity in an autonomous robot, Neural Networks, 15 (3), 2002, 761–774. doi:10.1016/S0893-6080(02)00062-X
  10. [10] P. Verschure & T. Voegtlin, A bottom-up approach towards the acquisition and expression of sequential representations applied to a behaving real-world device, Neural Networks, 11 (7–8), 1998, 1531–1549. doi:10.1016/S0893-6080(98)00029-X
  11. [11] P. Verschure, Environmentally mediated synergy between perception and behaviour in mobile robots, Nature, 425, 2003, 620–624. doi:10.1038/nature02024
  12. [12] P. Fitzpatrick & G. Metta, Grounding vision through experimental manipulation, Philosophical Trans. of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 361 (1811), 2003, 2165–2185. doi:10.1098/rsta.2003.1251
  13. [13] P. Husbands, T.M.C. Smith, N. Jakobi, & M. O’Shea, Better living through chemistry: Evolving GasNets for robot control, Connection Science, 10 (3–4), 1998, 185–210. doi:10.1080/095400998116404
  14. [14] R. Pfeifer & C. Scheier, Sensory-motor coordination: The metaphor and beyond, Robotics and Autonomous Systems, 20, 1997, 157–178. doi:10.1016/S0921-8890(97)80707-5
  15. [15] A.R. Russell, Using tactile whiskers to measure surface contours, Proc. IEEE Int. Conf. on Robotics and Automation, 1992, 1295–1300. doi:10.1109/ROBOT.1992.220070
  16. [16] M. Kaneko, N. Kanayama, & T. Tsuji, Active antenna for contact sensing, IEEE Trans. on Robotics and Automation, 14 (2), 1998, 278–291. doi:10.1109/70.681246
  17. [17] M. Fend, B.S.H. Yokoi, & R. Pfeifer, An active artificial whisker array for texture discrimination, Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2003. doi:10.1109/IROS.2003.1248782
  18. [18] D. Jung & A. Zelinksy, Whisker-based mobile robot navigation, Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 1996, 497–504. doi:10.1109/IROS.1996.570842
  19. [19] R.A. Brooks, A robot that walks: Emergent behavior from a carefully evolved network, Neural Computation, 1, 1989, 252–262. doi:10.1162/neco.1989.1.2.253
  20. [20] C. von der Malsburg, A neural cocktail-party processor, Biological Cybernetics, 54, 1986, 29–40. doi:10.1007/BF00337113
  21. [21] G. Tononi, O. Sporns, & G.M. Edelman, Reentry and the problem of integrating multiple cortical areas: Simulation of dynamic integration in the visual system, Cerebral Cortex, 2 (3), 1992, 310–335. doi:10.1093/cercor/2.4.310
  22. [22] G.M. Edelman, Neural Darwinism: Selection and reentrant signaling in higher brain function, Neuron, 10 (2), 1993, 115–125. doi:10.1016/0896-6273(93)90304-A
  23. [23] L.G. Ungerleider & J.V. Haxby, "What" and "where" in the human brain, Current Opinion in Neurobiology, 4, 1994, 157–165. doi:10.1016/0959-4388(94)90066-3
  24. [24] W. Schultz, P. Dayan, & PR. Montague, A neural substrate of prediction and reward, Science, 275 (5306), 1997, 1593–1599. doi:10.1126/science.275.5306.1593
  25. [25] O. Sporns, N. Almassy, & G.M. Edelman, Plasticity in value systems and its role in adaptive behavior, Adaptive Behavior, 8 (2), 2000, 129–148. doi:10.1177/105971230000800203
  26. [26] G. Aston-Jones & F.E. Bloom, Norepinephrine-containing locus coeruleus neurons in behaving rats exhibit pronounced responses to non-noxious environmental stimuli, Journal of Neuroscience, 1, 1981, 887–900.
  27. [27] J. Wray & G.M. Edelman, A model of color vision based on cortical reentry, Cerebral Cortex, 6 (4), 1996, 701–716. doi:10.1093/cercor/6.5.701
  28. [28] E.L. Bienenstock, L.N. Cooper, & P.W. Munro, Theory for the development of neuron selectivity: Orientation specificity and binocular interaction in visual cortex, Journal of Neuroscience, 2 (1), 1982, 32–48.
  29. [29] S. Song & L.F. Abbott, Cortical development and remapping through spike timing-dependent plasticity, Neuron, 32 (2), 2001, 339–350. doi:10.1016/S0896-6273(01)00451-2
  30. [30] P.R. Montague, P. Dayan, & T.J. Sejnowski, A framework for mesencephalic dopamine systems based on predictive Hebbian learning, Journal of Neuroscience, 16 (4), 1996, 1936–1947.
  31. [31] K.J. Friston, G. Tononi, G.N. Reeke, Jr., O. Sporns, & G.M. Edelman, Value-dependent selection in the brain: Simulation in a synthetic neural model, Journal of Neuroscience, 59 (2), 1994, 229–243. doi:10.1016/0306-4522(94)90592-4
  32. [32] M.A. Harvey, R. Bermejo, & H.P. Zeigler, Discriminative whisking in the head-fixed rat: Optoelectronic monitoring during tactile detection and discrimination tasks, Somatosensory and Motor Research, 18 (3), 2001, 211–222. doi:10.1080/01421590120072204
  33. [33] T. Prigg, D. Goldreich, G.E. Carvell, & D.J. Simons, Texture discrimination and unit recordings in the rat whisker/barrel system, Physiol Behav, 77 (4–5), 2002, 671–675. doi:10.1016/S0031-9384(02)00917-4
  34. [34] T.A. Woolsey & H. Van der Loos, The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex: The description of a cortical field composed of discrete cytoarchitectonic units, Brain Research, 17 (2), 1970, 205–242. doi:10.1016/0006-8993(70)90079-X
  35. [35] K.F. Jensen & H.P. Killackey, Terminal arbors of axons projecting to the somatosensory cortex of the adult rat: I. The normal morphology of specific thalamocortical afferents, Journal of Neuroscience, 7 (9), 1987, 3529–3543.
  36. [36] A.A. Ghazanfar & M.A. Nicolelis, Spatiotemporal properties of layer V neurons of the rat primary somatosensory cortex, Cerebral Cortex, 9 (3), 1999, 348–361. doi:10.1093/cercor/9.4.348
  37. [37] S. Maren & M.S. Fanselow, The amygdala and fear conditioning: Has the nut been cracked? Neuron, 16 (2), 1996, 237–240.
  38. [38] J.E. LeDoux, Emotion: Cues from the brain, Annual Review of Psychology, 46, 1995, 209–235. doi:10.1146/annurev.ps.46.020195.001233
  39. [39] A.B. Saul & A.L. Humphrey, Evidence of input from lagged cells in the lateral geniculate nucleus to simple cells in cortical area 17 of the cat, Journal of Neurophysiology, 68 (3), 1992, 1190–1208.
  40. [40] J. Wolfe & L.A. Palmer, Temporal diversity in the lateral geniculate nucleus of cat, Visual Neuroscience, 15 (3), 1998, 653–675. doi:10.1017/S0952523898154068
  41. [41] N.J. Mackintosh, Conditioning and associative learning (Oxford: Oxford University Press, 1983).
  42. [42] G.C. DeAngelis, I. Ohzawa, & R.D. Freeman, Receptivefield dynamics in the central visual pathways, Trends in Neuroscience, 18 (8), 1995, 451–458. doi:10.1016/0166-2236(95)94496-R
  43. [43] A. Clark, Being there: Putting brain, body, and world together again (Cambridge, MA: MIT Press, 1997).
  44. [44] K. Kawamura, R.A. Peters, R. Bodenheimer, N. Sarkar, J. Park, C. Clifton, A. Spratley, & K. Hambuchen, A parallel distributed cognitive control system for a humanoid robot, Int. Journal of Humanoid Robotics, 1 (1), 2004, 65–95. doi:10.1142/S021984360400006X
  45. [45] D. Roy, K. Hsiao, & N. Mavridis, Mental imagery for a conversational robot, forthcoming in IEEE Trans. on Systems, Man, and Cybernetics.
  46. [46] S.S.M. Wang & P.M. Will, Sensors for computer controlled mechanical assembly, Industrial Robot (March), 1978, 9–18. doi:10.1108/eb004489
  47. [47] G.M. Edelman & J. Gally, Degeneracy and complexity in biological systems, Proc. National Academy Science of the United states of America, 98(24), 2001, 13763-13768. doi:10.1073/pnas.231499798

Important Links:

Go Back