Ganesan Kanagaraj,∗ Shahul Abdul Rahim Sheik Masthan,∗ and Vincent F. Yu∗∗


  1. [1] T. Raja Prathab, R. Suja Mani Malar, and T. Ahilan, Amethod of extended Jacobian and firefly algorithm for thekinematic analysis of planar robots, International Journal ofRobotics and Automation, 6(2), 2017, 141–150.
  2. [2] H. Yi and R. Langari, A design and bio-inspired control of anovel redundant manipulator with m-DOFs links, InternationalJournal of Robotics and Automation, 27(4), 2012, 206–3801.
  3. [3] D. Manocha and J.F. Canny, Efficient inverse kinematicsfor general 6R manipulators, IEEE Journal on Robotics andAutomation, 10(5), 1994, 648–657.
  4. [4] Q. Yu, G. Wang, T. Ren, L. Wu, and K. Chen, An efficientalgorithm for inverse kinematics of robots with non-sphericalwrist, International Journal of Robotics and Automation, 33(1),2018, 206–4943.
  5. [5] A. El-Sherbiny, M.A. Elhosseini, and A.Y. Haikal, A compar-ative study of soft computing methods to solve inverse kine-matics problem, Ain Shams Engineering Journal, 9(4), 2018,2535–2548.
  6. [6] A. El-Sherbiny, A.E. Mostafa, and A.Y. Haikal. A new ABCvariant for solving inverse kinematics problem in 5 DOF robotarm, Applied Soft Computing, 73, 2018, 24–38.
  7. [7] Y. Cao, J. Gu, Y. Zang, X. Wu, S. Zhang, and M. Guo,Path planning-oriented obstacle avoiding workspace modellingfor robot manipulator, International Journal of Robotics andAutomation, 34(1), 2019, 206–4335.
  8. [8] R. Ramkumar, C. Karthikeyan, and A.K. Dash, A newworkspace analysis method for 6-DOF 3-RRRS parallel ma-nipulators, International Journal of Robotics and Automation,34, 2019, 206–5178.
  9. [9] R.V. Ram, P.M. Pathak, and S.J. Junco, Inverse kinematics ofmobile manipulator using bidirectional PSO by manipulator de-coupling, Mechanism and Machine Theory, 131, 2019, 385–405.
  10. [10] S. Dereli and R. K¨oker, A meta-heuristic proposal for inversekinematics solution of 7-DOF serial robotic manipulator,Artificial Intelligence, Rev, 2019, 1–16.
  11. [11] Y. Huang, M. Fei, and W. Zhou, Multi-objective trajectoryplanning of robot manipulator in a moving obstacle environ-ment, International Journal of Robotics and Automation, 34,2019, 206-0088.
  12. [12] G. Waseem and A. Al-Mousa, Robotic obstacle avoidancein a partially observable environment using feature ranking,International Journal of Robotics and Automation, 34(5),2019, 206–5213.
  13. [13] C. Andreas, Solving the inverse kinematics problem of redun-dant robots operating in complex environments via modifiedGA, Mechanism and Machine Theory, 33(3), 1998, 273–292.
  14. [14] M. Ayyildiz and K. C¸etinkaya, Comparison of four differentheuristic optimization algorithms for the inverse kinematicssolution of a real 4-DOF serial robot manipulator, NeuralComputing and Applications, 27(4), 2016, 825–836.
  15. [15] Z.-W. Ren, Z.-H. Wang, and L.-N. Sun, A global harmonysearch algorithm and its application to inverse kinematicsproblem for humanoid arm, Control Theory & Applications,29(7), 2012, 867–876.
  16. [16] G.S. Chyan and S.G. Ponnambalam, Obstacle avoidance con-trol of redundant robots using variants of particle swarm op-timization, Robotics and Computer Integrated Manufacturing,28(2), 2012, 147–153.
  17. [17] S.M. Warnakulasooriya and S.G. Ponnambalam, Trajectoryplanning and obstacle avoidance control of redundant robotsusing differential evolution and particle swarm optimizationalgorithms, Proceedings of the Swarm, Evolutionary andMemetic Computing: 5th International Conference, SEMCCO2014, Vol. 8947, Springer, Switzerland, 2015, 596–605.
  18. [18] X.-S. Yang, A.H. Gandomi, Bat algorithm: A novel approachfor global engineering optimization, Engineering Computa-tions, 29(5), 2012, 464–483.
  19. [19] Build a Robot Step by Step using MATLAB: html
  20. [20] J.J. Craig, Introduction to Robotics: Mechanics and Control,3rd ed. (India: Pearson Education India, 2004).

Important Links:

Go Back