FUZZY SLIDING MODE CONTROL OF 3-DOF SHOULDER JOINT DRIVEN BY PNEUMATIC MUSCLE ACTUATORS

Kai Liu, Yang Wu, Jiaqi Xu, Yangwei Wang, Zhishang Ge, and Yonghua Lu

References

  1. [1] L.M. Sui, Z.W. Wang, and G. Bao, A comparison of mechanical properties of pneumatic muscle with biological muscle, Machine Tool & Hydraulics, (6), 2004, 22–24. DOI: 10.3969/j.issn.10013881.2004.06.009.
  2. [2] Y. Liu, Mechanism and impedance control of the ball universal joint robot driven by the pneumatic muscle actuator group, Journal of Mechanical Engineering, 49(15), 2013, 28–33.
  3. [3] P.K. Jamwal, S. Xie, and K.C. Aw, Kinematic design optimization of a parallel ankle rehabilitation robot using modified genetic algorithm, Robotics and Autonomous Systems, 57(10), 2009, 1018–1027.
  4. [4] Y.M. Kim, S.Y. Jung, and I. Moon, Design of a wearable upperlimb rehabilitation robot using parallel mechanism, ICCASSICE (Fukuoka, Japan: IEEE, 2009), 785–789.
  5. [5] G.L. Tao, H. Zuo, and H. Liu, Structure design and motion control of parallel platform driven by pneumatic muscles and air cylinder, Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science Edition), 49(5), 2015, 821–828.
  6. [6] G. Yang, Parallel manipulator driven by pneumatic muscle actuators, Journal of Mechanical Engineering, 42(7), 2006, 39–45.
  7. [7] W. Fan, G.Z. Peng, J.Y. Gao, et al., Study on the position control of a 3-DOF spherical parallel robot mechanism actuated by pneumatic muscle actuator, Hydraulics Pneumatics & Seals, (6), 2003, 1–5. DOI: 10.3969/j.issn.1008-0813.2003.06.001.
  8. [8] B.R. Wang, Y.L. Jin, M. Cheng, et al., Model simulation and position control experiments of pneumatic muscle with shape memory alloy braided sleeve, International Journal of Robotics and Automation, 28(1), 2013, 81–89.
  9. [9] G. Tao, Research achievements and development trends of pneumatic artificial muscles, Journal of Mechanical Engineering, 45(10), 2009, 75–83.
  10. [10] A. Hildebrandt, O. Sawodny, R. Neumann, et al., A flatness based design for tracking control of pneumatic muscle actuators, IEEE International Conf. on Control, Automation, Robotics and Vision (Singapore, Singapore: IEEE, 2002), 1156–1161.
  11. [11] D. Schindele and H. Aschemann, Comparison of cascaded backstepping control approaches with hysteresis compensation for a linear axis with pneumatic muscles, IFAC Proceedings Volumes, 46(23), 2013, 773–778.
  12. [12] L.H. Lin, J.Y. Yen, and F.C. Wang, Robust control for a pneumatic muscle actuator system, Transactions of the Canadian Society for Mechanical Engineering, 37(3), 2013, 581–590.
  13. [13] X.C. Zhu, G.L. Tao, B. Yao, et al., Adaptive robust posture control of a parallel manipulator driven by pneumatic muscles, Automatica, 44(9), 2008, 2248–2257.
  14. [14] N. Xiao and S.X. Guo, Modeling and control of a kind of parallel mechanism driven by piezoelectric actuators, International Journal of Robotics and Automation, 27(2), 2012, 206–216.
  15. [15] D. Schindele and H. Aschemann, Trajectory tracking of a pneumatically driven parallel robot using higher-order SMC, IEEE International Conf. on Methods and Models in Automation and Robotics (Miedzyzdroje, Poland: IEEE, 2010), 387–392.
  16. [16] M. Chettouh, R. Toumi, and M. Hamerlain, Chatter reduction in an artificial muscles robot application, International Journal of Robotics and Automation, 23(2), 2008, 88–97.
  17. [17] X.Y. Wang and Y.J. Pi, Trajectory tracking control of a hydraulic parallel robot manipulator with lumped disturbance observer, International Journal of Robotics and Automation, 28(2), 2013, 103–111.
  18. [18] X.R. Shen, G. Waycaster, and S.K. Wu, Design and control of a variable-radius pulley-based pneumatic artificial muscle actuation system, International Journal of Robotics and Automation, 28(4), 2013, 389–400.
  19. [19] M. Bouri and D. Thomasset, Sliding control of an electro-pneumatic actuator using an integral switching surface, IEEE Transactions on Control Systems Technology, 9(2), 2001, 368– 375.
  20. [20] G. Yang, CMAC-based variable structure position control of a pneumatic muscle actuator system, Journal of Mechanical Engineering, 40(10), 2004, 92–96.
  21. [21] C.C. Gao, Sliding mode variable structure control of pneumatic muscle actuator, Industrial Control Computer, 25(1), 2012, 18–19.
  22. [22] K. Liu, A new method to predict force for pneumatic muscle actuators, Advanced Robotics, 29(17), 2015, 1127–1136.

Important Links:

Go Back