POLICY GRADIENT-BASED INVERSE KINEMATICS REFINEMENT FOR TENDON-DRIVEN SERPENTINE SURGICAL MANIPULATOR

Jie Chen and Henry Lau

References

  1. [1] R.A. Beasley, Medical robots: Current systems and research directions, Journal of Robotics, 2012, 2012, 1–14.
  2. [2] K.H. Fuchs, Minimally invasive surgery, Endoscopy, 34(2), 2002, 154–159.
  3. [3] M.F. McGee, M.J. Rosen, J. Marks, R.P. Onders, A. Chak, A. Faulx, V.K. Chen, and J. Ponsky, A primer on natural orifice transluminal endoscopic surgery: Building a new paradigm, Surgical Innovation, 13(2), 2006, 86–93.
  4. [4] V. Vitiello, S.-L. Lee, T.P. Cundy, and G.-Z. Yang, Emerging robotic platforms for minimally invasive surgery, IEEE Reviews in Biomedical Engineering, 6, 2013, 111–126.
  5. [5] C. Bergeles and G.-Z. Yang, From passive tool holders to microsurgeons: Safer, smaller, smarter surgical robots, IEEE Reviews in Biomedical Engineering, 61(5), 2014, 1565–1576.
  6. [6] W. Xu, J. Chen, H.Y.K. Lau, and H. Ren, Automate surgical tasks for a flexible Serpentine Manipulator via learning actuation space trajectory from demonstration, 2016 IEEE Int. Conf. on Robotics and Automation (ICRA), IEEE, 2016, 4406–4413.
  7. [7] N. Simaan, K. Xu, A. Kapoor, W. Wei, P. Kazanzides, P. Flint, and R. Taylor, Design and integration of a telerobotic system for minimally invasive surgery of the throat, International Journal of Robotics Research, 28(9), 2009, 1134–1153.
  8. [8] C. Bergeles, A. Gosline, N.V. Vasilyev, P.J. Codd, P.J. del Nido, and P.E. Dupont, Design optimization of concentric tube robots based on task and anatomical constraints, IEEE Transactions on Robotics, 31(1), 2015, 398–403.
  9. [9] P.E. Dupont, J. Lock, B. Itkowitz, and E. Butler, Design and control of concentric-tube robots, IEEE Transactions on Robotics, 26(2), 2010, 209–225.
  10. [10] J. Chen, H.Y.K. Lau, W. Xu, and H. Ren, Towards transferring skills to flexible surgical robots with programming by demonstration and reinforcement learning, 2016 Eighth Int. Conf. on Advanced Computational Intelligence (ICACI), IEEE, 2016, 378–384.
  11. [11] J. Kober, J. Andrew Bagnell, and J. Peters, Reinforcement learning in robotics: A survey, International Journal of Robotics Research (2013), doi:10.1177/0278364913495721.
  12. [12] J. Kober and J.R. Peters, Policy search for motor primitives in robotics, Advances Inneural Information Processing Systems, 2009, 849–856.
  13. [13] A. Bajo, L.M. Dharamsi, J.L. Netterville, C.G. Garrett, and N. Simaan, Robotic-assisted micro-surgery of the throat: The trans-nasal approach, 2013 Proc. IEEE Int. Conf. Robotics and Automation, 2013, 232–238.
  14. [14] R.E. Goldman, A. Bajo, L.S. MacLachlan, R. Pickens, S.D. Herrell, and N. Simaan, Design and performance evaluation of a minimally invasive telerobotic platform for transurethral surveillance and intervention, IEEE Transactions on Biomedical Engineering, 60(4), 2013, 918–925.
  15. [15] F. Piltan, N. Sulaiman, A. Gavahian, S. Roosta, and S. Soltani, On line tuning premise and consequence FIS: Design fuzzy adaptive fuzzy sliding mode controller based on Lyaponuv theory, International Journal of Robotics and Automation, 2(5), 2011, 381–400.
  16. [16] J.K. Antonio, R. Ramabhadran, and T.L. Ling, A framework for optimal trajectory planning for automated spray coating, International Journal of Robotics and Automation, 12, 1997, 124–134.
  17. [17] S. Moosavian, A. Ali, and K. Alipour, On the dynamic tip-over stability of wheeled mobile manipulators,International Journal of Robotics and Automation, 22(4), 2007, 322.
  18. [18] Z. Li, J. Luo, N. Xi, and A. Ming, Development of hybrid joints for the compliant arm of human-symbiotic mobile manipulator, International Journal of Robotics and Automation, 20(4), 2005, 260–269.
  19. [19] H. Tourajizadeh, M.H. Korayem, and S.R. Nekoo, Sensitivity analysis of dynamic load carrying capacity of a cable-suspended robot, International Journal of Robotics and Automation, 33(1), 2018, DOI: 10.2316/Journal.206.2018.1.206-4718.
  20. [20] H. Banerjee, Z.T.H. Tse, and H. Ren, Soft robotics with compliance and adaptation for biomedical applications and forthcoming challenges, International Journal of Robotics and Automation, 33(1), 2018, 69–80.
  21. [21] Y. Hu, S. Ma, B. Li, M. Wang, and Y. Yuechao, Dynamic modelling of reconfigurable robots with independent locomotion and manipulation ability, International Journal of Robotics and Automation, 32(3), 2017, 201–213.
  22. [22] Q. Cheng, P. Liu, P. Lai, S. Xu, Y. Zou, C. Li, Chunquan, and L. hu, Modelling of soft tissue cutting in virtual surgery simulation: A literature review, International Journal of Robotics and Automation, 32(3), 2017, 243–255.
  23. [23] Y. Zhao, H. Yu, J. Zhang, J. Yang, and T. Zhao, Kinematics, dynamics and control of a stabilized platform with a 6-RUS parallel mechanism, International Journal of Robotics and Automation, 32(3), 2017, 283–290.

Important Links:

Go Back