Chenghao Yin, Baoquan Li, Wuxi Shi, and Ning Sun


  1. [1] Y. Liu, R. Xiong, Y. Wang, H. Huang, X. Xie, X. Liu, and G. Zhang, Stereo visual-inertial odometry with multiple Kalman filters ensemble, IEEE Transactions on Industrial Electronics, 63(10), 2016, 6205–6216.
  2. [2] H. J. Asl, M. Yazdani, and J. Yoon, Vision-based tracking control of quadrotor using velocity of image features, International Journal of Robotics and Automation, 31(4), 2016, 301–309.
  3. [3] H. Zhao, Y. Liu, X. Xie, Y. Liao, and X. Liu, Filtering based adaptive visual odometry sensor framework robust to blurred images, Sensors, 16(7), 2016, 1040.
  4. [4] W. He and Y. Dong, Adaptive fuzzy neural network control for a constrained robot using impedance learning, IEEE Transactions on Neural Networks and Learning Systems, 29(4), 2018, 1174–1186.
  5. [5] G. Hu, W. P. Tay, and Y. Wen, Cloud robotics: Architecture, challenges and applications, IEEE Networks, 26(3), 2012, 21–28.
  6. [6] H. Chen, C. Wang, X. J. Li, and D. Sun, Transportation of multiple biological cells through saturation-controlled optical teezers in crowded microenvironments, IEEE/ASME Transactions on Mechatronics, 21(2), 2016, 888–899.
  7. [7] B. Li, Y. Fang, and X. Zhang, Essential-matrix-based visual servoing of mobile robots without short baseline degeneration, International Journal of Robotics and Automation, 30(4), 2015, 397–406.
  8. [8] G. L. Mariottini, G. Oriolo, and D. Prattichizzo, Imagebased visual servoing for nonholonomic mobile robots using epipolar geometry, IEEE Transactions on Robotics, 23(1), 2007, 87–100.
  9. [9] L. Wang and C. Luo, A hybrid genetic Tabu search algorithm for mobile robot to solve AS/RS path planning, International Journal of Robotics and Automation, 33(2), 2018.
  10. [10] P. Salaris, A. Cristofaro, and L. Pallottino, Epsilon-optimal synthesis for unicycle-like vehicles with limited field-ofview sensors, IEEE Transactions on Robotics, 31(6), 2015, 1404–1418.
  11. [11] B. P. Larouche and Z. H. Zhu, Position-based visual servoing in robotic capture of moving target enhanced by kalman filter, International Journal of Robotics and Automation, 30(3), 2015, 267–277.
  12. [12] Z. Zhu, W. Zou, Q. Wang, and F. Zhang, A velocity compensation visual servo method for oculomotor control of bionic eyes, International Journal of Robotics and Automation, 33(1), 2018.
  13. [13] B. Tamadazte, N. L. Piat, and E. Marchand, A direct visual servoing scheme for automatic nanopositioning, IEEE/ASME Transactions on Mechatronics, 17(4), 2012, 728–736.
  14. [14] H. Wang, D. Guo, H. Xu, W. Chen, T. Liu, and K. Leang, Eyein-hand tracking control of free-floating space manipulator, IEEE Transactions on Aerospace and Electronic Systems, 53(4), 2017, 1855–1865.
  15. [15] T. Meng and W. He, Iterative learning control of a robotic arm experiment platform with input constraint, IEEE Transactions on Industrial Electronics, 65(1), 2017, 664–672, 2017.
  16. [16] S. Zhang, Y. Dong, Y. Ouyang, Z. Yin and K. Peng, Adaptive neural control for robotic manipulators with output constraints and uncertainties, IEEE Transactions on Neural Networks and Learning Systems, 29 (11), 2018, 5554–5564.
  17. [17] S. Y. Chen, J. Zhang, H. Zhang, N. M. Kowk, and Y. F. Li, Intelligent lighting control for vision-based robotic manipulation, IEEE Transactions on Industrial Electronics, 59(8), 2012, 3254–3263.
  18. [18] H. Wang, B. Yang, Y. Liu, W. Chen, X. Liang, and R. Pfeifer, Visual servoing of soft robot manipulator in constrained environments with an adaptive controller, IEEE/ASME Transactions on Mechatronics, 22(1), 2017, 41–50.
  19. [19] H. M. Becerra, G. Lopez-Nicolas, and C. Sagues, Aslidingmode-control law for mobile robots based on epipolar visual servoing from three views, IEEE Transactions on Robotics, 27(1), 2011, 175–183.
  20. [20] X. Zhang, Y. Fang, and N. Sun, Visual servoing of mobile robots for posture stabilization: From theory to experiments, International Journal of Robust and Nonlinear Control, 25(1), 2015, 1–15.
  21. [21] X. Zhang, Y. Fang, and X. Liu, Motion-estimation-based visual servoing of nonholonomic mobile robots, IEEE Transactions on Robotics, 27(6), 2011, 1167–1175.
  22. [22] N. Sun, T. Yang, Y. Fang, B. Lu, and Y. Qian, Nonlinear motion control of underactuated three-dimensional boom crane systems with hardware experiments, IEEE Transactions on Industrial Informatics, 14(3), 2018, 887–897.
  23. [23] J. Chen, B. Jia, and K. Zhang, Trifocal tensor-based adaptive visual trajectory tracking control of mobile robots, IEEE Transactions on Cybernetics, 47(11), 2017, 3784–3798.
  24. [24] R. Brockett, The early days of geometric nonlinear control, Automatica, 50(9), 2014, 2203–2224.
  25. [25] N. Sun, Y. Fang, H. Chen, Y. Fu, and B. Lu, Nonlinear stabilizing control for ship-mounted cranes with disturbances induced by ship roll and heave movements: Design, analysis, and experiments, IEEE Transactions on Systems, Man, and Cybernetics: Systems, DOI: 10.1109/TSMC.2017.2700393.
  26. [26] P. Murrieri, D. Fontanelli, and A. Bicchi, A hybrid-control approach to the parking problem of a wheeled vehicle using limited view-angle visual feedback, International Journal of Robotics Research, 23(4–5), 2004, 437–448.
  27. [27] A. D. Luca, G. Oriolo, and P. R. Giordano, Feature depth observation for image-based visual servoing: Theory and experiments, International Journal of Robotics Research, 27(10), 2008, 1093–1116.
  28. [28] Y. Fang, X, Liu, and X. Zhang, Adaptive active visual servoing of nonholonomic mobile robots, IEEE Transactions on Industrial Electronics, 59(1), 2012, 486–497.
  29. [29] N. Sun, Y. Wu, Y. Fang, and H. Chen, Nonlinear antiswing control for crane systems with double-pendulum swing effects and uncertain parameters: design and experiments, IEEE Transactions on Automation Science and Engineering, 15(3), 2018, 1413–1422.
  30. [30] A. P. Dani, N. R. Fischer, and W. E. Dixon, Single camera structure and motion, IEEE Transactions on Automatic Control, 57(1), 2012, 241–246.
  31. [31] D. Chwa, A. P. Dani, and W. E. Dixon, Range and motion estimation of a monocular camera using static and moving objects, IEEE Transactions on Control Systems Technology, 24(4), 2016, 1174–1183.
  32. [32] W. MacKunis, N. Gans, A. Parikh, and W. E. Dixon, Unified tracking and regulation visual servo control for wheeled mobile robots, Asian Journal of Control, 16(3), 2014, 669–678.
  33. [33] Z. Li, C. Yang, C.-Y. Su, J. Deng, and W. Zhang, Vision-based model predictive control for steering of a nonholonomic mobile robot, IEEE Transactions on Control Systems Technology, 24(2, pp. 553–564, Mar. 2016.
  34. [34] X. Zhang, Y. Fang, B. Li, and J. Wang, Visual servoing of nonholonomic mobile robots with uncalibrated camera-to-robot parameters, IEEE Transactions on Industrial Electronics, 64(1), 2017, 390–400.
  35. [35] B. Li, Y. Fang, and X. Zhang, Visual servo regulation of wheeled mobile robots with an uncalibrated onboard camera, IEEE/ASME Transactions on Mechatronics, 21(5), 2016, 2330–2342.
  36. [36] Z. Ma and J. Su, Robust uncalibrated visual servoing control based on disturbance observer, ISA Transactions, 59, 2015, 193–204.
  37. [37] M. Liu, C. Pradalier, and R. Siegwart, Visual homing from scale with an uncalibrated omnidirectional camera, IEEE Transactions on Robotics, 29(6), 2013, 1353–1365.
  38. [38] J. J. Craig, Introduction to robotics: Mechanics and control, 3rd ed. (Englewood Cliffs, NJ: Prentice-Hall, 2005).
  39. [39] D. F. Dementhon and L. S. Davis, Model-based object pose in 25 lines of code, International Journal of Computer Vision, 15(1), 1995, 123–141.
  40. [40] M. Aicardi, G. Casalino, A. Bicchi, and A. Balestrino, Closed loop steering of unicycle-like vehicles via Lyapunov techniques, IEEE Robotics & Automation Magazine, 2(1), 1995, 27–35.

Important Links:

Go Back