A REVIEW ON HUMAN–EXOSKELETON COORDINATION TOWARDS LOWER LIMB ROBOTIC EXOSKELETON SYSTEMS

Yue Ma, Xinyu Wu, Jingang Yi, Can Wang, and Chunjie Chen

References

  1. [1] A. Zoss, H. Kazerooni, and A. Chu, Biomechanical design of theBerkeley lower extremity exoskeleton (BLEEX), IEEE/ASME Transactions on Mechatronics, 11(2), 2006, 128–138.
  2. [2] K. Amundson, J. Raade, N. Harding, and H. Kazerooni, Hybrid hydraulic-electric power unit for field and service robots, Proc. IEEE/RSJ Conf. on Intelligent Robots and Systems, Edmonton, Alta., Canada, 2005, 3453–3458.
  3. [3] R. Steger, S. Kim, and H. Kazerooni, Control scheme and networked control architecture for the Berkeley lower extremity exoskeleton (BLEEX), Proc. IEEE Conf. on Robotics and Automation, Orlando, FL, USA, 2006, 3469–3476.
  4. [4] H. Kazerooni, N. Harding, and R. Angold, Low extremity exoskeleton, Int. Patent WO 2006/078 871A2, 2006.
  5. [5] H. Kazerooni, N. Harding, R. Angold, K. Amundson, J. W. Burns, and A. Zoss, Wearable material handling system, Int. Patent WO 2010/101 595A1, 2010.
  6. [6] [Online]. Available: http://www.rb3d.com/en/exo/ (accessed on Sep. 2015).
  7. [7] S. Yoshiyuki, HAL: Hybrid assistive limb based on cybernics, Robotics research (Berlin, Heidelberg: Springer, 2010), 25–34.
  8. [8] Y. Tingfang, C. Marco, O.C. Maria, and V. Nicola, Review of assistive strategies in powered lower-limb orthoses and exoskeletons, Robotics and Autonomous Systems, 64,2015, 120–136.
  9. [9] N. Domen and R. Robert, A survey of sensor fusion methods in wearable robotics, Robotics and Autonomous Systems, 73, 2015, 155–170.
  10. [10] M. Wei, L. Quan, Z. Zude, A. Qingsong, S. Bo, and X.S. Shane, Recent development of mechanisms and control strategies for robot-assisted lower limb rehabilitation, Mechatronics, 31, 2015, 132–145.
  11. [11] M.R. Tucker, O. Jeremy, P. Anna, B. Hannes, B. Mohamed, L. Olivier, D.R.M. José, R. Robert, V. Heike, and G. Roger, Control strategies for active lower extremity prosthetics and orthotics: a review, Journal of Neuroengineering and Rehabilitation, 12(1), 2015, 1.
  12. [12] V.A. Joshua and X.S. Quan, Towards compliant and wearable robotic orthoses: A review of current and emerging actuator technologies, Medical Engineering & Physics, 4, 2016, 317– 325.
  13. [13] W. Michael, G. Martin, C. Oliver, R. Stephan, and B. Philipp, Active lower limb prosthetics: a systematic review of design issues and solutions, Biomedical Engineering Online, 15(3), 2016, 140.
  14. [14] S.K. Banala, S.H. Kim, S.K. Agrawal, and J.P. Scholz, Robot assisted gait training with active leg exoskeleton (ALEX), IEEE Transactions on Neural Systems and Rehabilitation Engineering, 17(1), 2009, 2–8.
  15. [15] S.K. Banala, S.K. Agrawal, S.H. Kim, and J.P. Scholz, Novel gait adaptation and neuromotor training results using an active leg exoskeleton, IEEE/ASME Transactions on Mechatronics, 15(2), 2010, 216-225.
  16. [16] X. Jin, X. Cui, and S.K. Agrawal, Design of a cable-driven active leg exoskeleton (C-ALEX) and gait training experiments with human subjects, Proc. IEEE Conf. on Robotics and Automation, Seattle, WA, USA, 2015, 5578–5583.
  17. [17] G.S. Heo, S.-R. Lee, M.K. Kwak, C.W. Park, G. Kim, and C.-Y. Lee, Motion control of bicycle-riding exoskeleton robot with interactive force analysis, International Journal of Precision Engineering and Manufacturing, 16(7), 1631–1637.
  18. [18] P. Beyl, M. Van Damme, P. Cherelle, and D. Lefeber, Safe and compliant guidance in robot-assisted gait rehabilitation using proxy-based sliding mode control, Proc. IEEE Conf. on Rehabilitation Robotics, Kyoto, Japan, 2009, 321–326.
  19. [19] P. Beyl, K. Knaepen, S. Duerinck, M. Van Damme, B. Vanderborght, R. Meeusen, and D. Lefeber, Safe and compliant guidance by a powered knee exoskeleton for robotassisted rehabilitation of gait, Advanced Robotics, 25(5), 2011, 513–535.
  20. [20] K. Knaepen, P. Beyl, S. Duerinck, F. Hagman, D. Lefeber, and R. Meeusen, Human–robot interaction: kinematics and muscle activity inside a powered compliant knee exoskeleton, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 22(6), 2014, 1128–1137.
  21. [21] A.I.A. Ahmed, H. Cheng, X. Lin, Z.M.E. Elhassan, and M. Omer, On-line walking speed control in human-powered exoskeleton systems, Int. Conf. on Communication, Control, Computing and Electronics Engineering, Khartoum, Sudan, 2017, 1–7.
  22. [22] A.I.A. Ahmed, C. Hong, L. Zhang, M. Omer, and X. Lin, On-line walking speed control in human-powered exoskeleton systems based on dual reaction force sensors, Journal of Intelligent and Robotic Systems, 87(1), 2017, 59–80.
  23. [23] J. Hu, Z.-G. Hou, Y. Chen, L. Peng, and L. Peng, Task-oriented active training based on adaptive impedance control with iLeg-a horizontal exoskeleton for lower limb rehabilitation, Proc. IEEE Conf. on Robotics and Biomimetics, Shenzhen, China, 2013, 2025–2030.
  24. [24] R. Lopez, H. Aguilar-Sierra, S. Salazar, J. Torres, and R. Lozano, Adaptive control for passive kinesiotherapy ELLTIO, Proc. IEEE Conf. on Advanced Robotics, Montevideo, Uruguay, 2013, 1–6.
  25. [25] B. Ugurlu, H. Oshima, and T. Narikiyo, Lower body exoskeleton-supported compliant bipedal walking for paraplegics: how to reduce upper body effort?, Proc. IEEE Conf. on Robotics and Automation, Hong Kong, China, 2014, 1354–1360.
  26. [26] P.K. Jamwal, S. Hussain, M.H. Ghayesh, and S.V. Rogozina, Impedance control of an intrinsically compliant parallel ankle rehabilitation robot, IEEE Transactions on Industrial Electronics, 63(6), 2016, 3638–3647.
  27. [27] P.K. Jamwal, S. Hussain, M.H. Ghayesh, and S.V. Rogozina, Adaptive impedance control of parallel ankle rehabilitation robot, Journal of Dynamic Systems Measurement and Control-Transactions of the ASME, 139(11), 2017, 1608.
  28. [28] H. Rifai, M.S. Ben Abdessalem, A. Chemori, S. Mohammed, and Y. Amirat, Augmented L1 adaptive control of an actuated knee joint exoskeleton: from design to real-time experiments, Proc. IEEE Conf. on Robotics and Automation, Stockholm, Sweden, 2016, 5708–5714.
  29. [29] H. Rifai, S. Mohammed, K. Djouani, and Y. Amirat, Toward lower limbs functional rehabilitation through a kneejoint exoskeleton, IEEE Transactions on Control Systems Technology, 25(2), 2017, 712–719.
  30. [30] W.M. dos Santos, G.A.P. Caurin, and A.A.G. Siqueira, Design and control of an active knee orthosis driven by a rotary series elastic actuator, Control Engineering Practice, 58, 2017, 307–318.
  31. [31] X. Li, Y. Pan, G. Chen, and H. Yu, Multi-modal control scheme for rehabilitation robotic exoskeletons, International Journal of Robotics Research, 36(5–7), 2017, 759–777.
  32. [32] G. Colombo, M. Joerg, R. Schreier, and V. Dietz, Treadmill training of paraplegic patients using a robotic orthosis, Journal of Rehabilitation Research and Development, 37(6), 2000, 693–700.
  33. [33] B. Chen, X. Zhao, H. Ma, L. Qin, and W.-H. Liao, Design and characterization of a magneto-rheological series elastic actuator for a lower extremity exoskeleton, Smart Materials and Structures, 26(10), 2017, 105008.
  34. [34] Y. Long, Z.-J. Du, W. Wang, and W. Dong, Development of a wearable exoskeleton rehabilitation system based on hybrid control mode, International Journal of Advanced Robotic Systems, 13, 2016, 1729881416664847.
  35. [35] W.Y.-W. Tung, M. McKinley, M.V. Pillai, J. Reid, and H. Kazerooni, Design of a minimally actuated medical exoskeleton with mechanical swing-phase gait generation and sit-stand assistance, ASME Conf. on Dynamic Systems and Control, Palo Alto, California, USA, 2013, 4–13.
  36. [36] W. Banchadit, A. Temram, T. Sukwan, P. Owatchaiyapong, and J. Suthakorn, Design and implementation of a new motorized-mechanical exoskeleton based on CGA patternized control, Proc. IEEE Conf. on Robotics and Biomimetics, Guangzhou, China, 2012, 1668–1673.
  37. [37] D.A. Winter, Anthropometry, in Biomechanics and Motor Control of Human Movement, Chapter 4, 2009, 51–74.
  38. [38] S. Tanabe, S. Hirano, and E. Saitoh, Wearable Power-Assist Locomotor (WPAL) for supporting upright walking in persons with paraplegia, Neurorehabilitation, 33(1), 2013, 99–106.
  39. [39] K.H. Low, X. Liu, and H. Yu, Development of NTU wearable exoskeleton system for assistive technologies, Proc. IEEE Conf. on Mechatronics and Automation, Niagara Falls, Ont., Canada, 2005, 1099–1106.
  40. [40] K.H. Low, X. Liu, C.H. Goh, and H. Yu, Locomotive control of a wearable lower exoskeleton for walking enhancement, Journal of Vibration and Control, 12(12), 2006, 1311–1336.
  41. [41] W. Kim, S. Lee, M. Kang, J. Han, and C. Han, Energy-efficient gait pattern generation of the powered robotic exoskeleton using DME, Proc. IEEE/RSJ Conf. on Intelligent Robots and Systems, Taipei, Taiwan, 2010, 2475–2480.
  42. [42] S. Lee, W. Kim, M. Kang, J. Han, and C. Han, Optimal gait pattern generation for powered robotic exoskeleton and verification of its feasibility, Proc. Int. Symposium in Robot and Human Interactive Communication, Viareggio, Italy, 2010, 500–505.
  43. [43] D. Sanz-Merodio, M. Cestari, J. Carlos Arevalo, and E. Garcia, A lower-limb exoskeleton for gait assistance in quadriplegia, Proc. IEEE/RSJ Conf. on Robotics and Biomimetics, Guangzhou, China, 2012, 122–127.
  44. [44] D. Sanz-Merodio, M. Cestari, J.C. Arevalo, X.A. Carrillo, and E. Garcia, Generation and control of adaptive gaits in lower-limb exoskeletons for motion assistance, Advanced Robotics, 28(5), 2014, 329–338.
  45. [45] D. Sanz-Merodio, J. Sancho, M. Perez, and E. Garcia, Control architecture of the ATLAS 2020 lower limb active orthosis, Advances in Cooperative Robotics, 2017, 860–868.
  46. [46] N. Trung, T. Komeda, T. Miyoshi, and L. Ota, The powered gait training system using feedback from own walking information, Issnip Conf. on Biosignals and Biorobotics, Rio de Janerio, Brazil, 2013, 239–243.
  47. [47] Y. Hasegawa and K. Nakayama, Finger-mounted walk controller of powered exoskeleton for paraplegic patient’s walk, World Automation Congress, Waikoloa, HI, USA, 2014, 400– 405.
  48. [48] M. Li, Z. Yuan, X. Wang, and Y. Hasegawa, Electric stimulation and cooperative control for paraplegic patient wearing an exoskeleton, Robotics and Autonomous Systems, 98, 2017, 204–212.
  49. [49] T. Kagawa, H. Ishikawa, T. Kato, C. Sung, and Y. Uno, Optimization-based motion planning in joint space for walking assistance with wearable robot, IEEE Transactions on Robotics, 31(2), 2015, 415–424.
  50. [50] R. Griffin, T. Cobb, T. Craig, M. Daniel, N. van Dijk, J. Gines, K. Kramer, S. Shah, O. Siebinga, J. Smith, and P. Neuhaus, Stepping forward with exoskeletons team IHMC’s design and approach in the 2016 Cybathlon, IEEE Robotics and Automation Magazine, 24(4), 2017, 66–74.
  51. [51] K. Kamali, A.A. Akbari, and A. Akbarzadeh, Trajectory generation and control of a knee exoskeleton based on dynamic movement primitives for sit-to-stand assistance, Advanced Robotics, 30(13), 2016, 846–860.
  52. [52] D.J. Reinkensmeyer, D. Aoyagi, J.L. Emken, J.A. Galvez, W. Ichinose, G. Kerdanyan, S. Maneekobkunwong, K. Minakata, J.A. Nessler, R. Weber, R.R. Roy, R. de Leon, J.E. Bobrow, S.J. Harkema, and V.R. Edgerton, Tools for understanding and optimizing robotic gait training, Journal of Rehabilitation Research and Development, 43(5), 657–670.
  53. [53] H.K. Kwa, J.H. Noorden, M. Missel, T. Craig, J.E. Pratt, and P.D. Neuhaus, Development of the IHMC mobility assist exoskeleton, Proc. IEEE Conf. on Robotics and Automation, Kobe, Japan, 2009, 1349–1355.
  54. [54] P.D. Neuhaus, J.H. Noorden, T.J. Craig, T. Torres, J. Kirschbaum, and J.E. Pratt, Design and evaluation of Mina: a robotic orthosis for paraplegics, Proc. IEEE Conf. on Rehabilitation Robotics, Zurich, Switzerland, 2011, 1–8.
  55. [55] U. Lugris, J. Carlin, A. Luaces, and J. Cuadrado, Consideration of assistive devices in the gait analysis of spinal cord-injured subjects, ASME Conf. on Multibody Systems, Nonlinear Dynamics, and Control, Portland, Oregon, USA, 2014, 9–18.
  56. [56] Y. Yang, C. Yang, K.-M. Lee, and H. Yu, Model-based fuzzy adaptation for control of a lower extremity rehabilitation exoskeleton, Proc. IEEE/ASME Conf. on Advanced Intelligent Mechatronics, Singapore, 2009, 350.
  57. [57] J.-F. Zhang, Y.-M. Dong, C.-J. Yang, Y. Geng, Y. Chen, and Y. Yang, 5-Link model based gait trajectory adaption control strategies of the gait rehabilitation exoskeleton for post-stroke patients, Mechatronics, 20(3), 2010, 368–376.
  58. [58] A. Duschau-Wicke, J. Von Zitzewitz, L. Luenenburger, and R. Riener, Patient-driven cooperative gait training with the rehabilitation robot lokomat, Proc. Int. Fed. European Conf. on Medical and Biological Engineering, ETH Zurich, Zurich, Switzerland, 2009, 1616–1619.
  59. [59] M. Talaty, A. Esquenazi, and J.E. Briceno, Differentiating ability in users of the ReWalk(TM) powered exoskeleton: an analysis of walking kinematics, Proc. IEEE Conf. on Rehabilitation Robotics, Seattle, WA, USA, 2013, 1–5.
  60. [60] K.A. Strausser, T.A. Swift, A.B. Zoss, and H. Kazerooni, Prototype medical exoskeleton for paraplegic mobility: first experimental results, Proc. ASME Conf. on Dynamic Systems and Control Conference, Cambridge, Massachusetts, USA, 2010, 453–458.
  61. [61] H.A. Quintero, R.J. Farris, and M. Goldfarb, Control and implementation of a powered lower limb orthosis to aid walking in paraplegic individuals, Proc. IEEE Conf. on Rehabilitation Robotics, Zurich, Switzerland, 2011, 1–6.
  62. [62] K.A. Strausser and H. Kazerooni, The development and testing of a human machine interface for a mobile medical exoskeleton, Proc. IEEE/RSJ Conf. on Intelligent Robots and Systems, San Francisco, CA, USA, 2011, 4911–4916.
  63. [63] D. Sanz-Merodio, M. Cestari, J. Carlos Arevalo, and E. Garcia, Control motion approach of a lower limb orthosis to reduce energy consumption, International Journal of Advanced Robotic Systems, 9(6), 2012, 232.
  64. [64] A.J. del-Ama, A. Gil-Agudo, J.L. Pons, and J.C. Moreno, Hybrid FES-robot cooperative control of ambulatory gait rehabilitation exoskeleton, Journal of Neuroengineering and Rehabilitation, 11(4), 2014, 27.
  65. [65] J. Poonsiri, M. Rachagorngij, and W. Charoensuk, Biomechanical based design of an active knee ankle foot orthosis to augment the knee motions, Proc. Int. Conf. on Biomedical Engineering, Fukuoka, 2014, 1–5.
  66. [66] F. Chen, Y. Yu, Y. Ge, J. Sun, and B. Wu, A PAWL for enhancing strength and endurance during walking using interaction force and dynamical information, Porc. IEEE Conf. on Robotics and Biomimetics, Kunming, China, 2006, 654–659.
  67. [67] K. Kong and D. Jeon, Design and control of an exoskeleton for the elderly and patients, IEEE/ASEM Transactions on Mechatronics, 11(4), 2006, 428–432.
  68. [68] B. Weinberg, J. Nikitczuk, S. Patel, B. Patritti, C. Mavroidis, P. Bonato, and P. Canavan, Design, control and human testing of an active knee rehabilitation orthotic device, Proc. IEEE Conf. on Robotics and Automation, Roma, Italy, 2007, 4126–4133.
  69. [69] Q. Wu, X. Wang, F. Du, and X. Zhang, Design and control of a powered hip exoskeleton for walking assistance, International Journal of Advanced Robotic Systems, 12, 2015, 18.
  70. [70] C. Zhang, X. Zang, Z. Leng, H. Yu, J. Zhao, and Y. Zhu, Human–machine force interaction design and control for the HIT load-carrying exoskeleton, Advances in Mechanical Engineering, 8(4), 2016, 1687814016645068.
  71. [71] K. Fujishiro, T. Ariumi, O. Oyama, and T. Yoshimitu, Development of pneumatic assist system for human walk, SICE Annual Conf. Program and Abstracts, 2003, 41.
  72. [72] J. Chen and W.-H. Liao, A leg exoskeleton utilizing a magnetorheological actuator, Proc. IEEE Conf. on Robotics and Biomimetics, Kunming, China, 2006, 824–829.
  73. [73] K.H. Low and Y. Yin, Providing assistance to knee in the design of a portable active orthotic device, Proc. IEEE Conf. on Automation Science and Engineering, Shanghai, China, 2016, 188.
  74. [74] C.J. Walsh, D. Paluska, K. Pasch, W. Grand, A. Valiente, and H. Herr, Development of a lightweight, underactuated exoskeleton for load-carrying augmentation, Proc. IEEE Conf. on Robotics and Automation, Orlando, FL, USA, 2006, 3485.
  75. [75] C.J. Walsh, K. Pasch, and H. Herr, An autonomous, underactuated exoskeleton for load-carrying augmentation, Proc. IEEE Conf. on Intelligent Robots and Systems, Beijing, China, 2006, 1410–1415.
  76. [76] C.J. Walsh, K. Endo, and H. Herr, A quasi-passive leg exoskeleton for load-carrying augmentation, International Journal of Humanoid Robotics, 4(3), 2007, 487–506.
  77. [77] A.M. Oymagil, J.K. Hitt, T. Sugar, and J. Fleeger, Control of a regenerative braking powered ankle foot orthosis, Proc. IEEE Conf. on Rehabilitation Robotics, Noordwijk, Netherlands, 2007, 28.
  78. [78] M. Sugisaka, J. Wang, H. Tsumura, and M. Kataoka, A control method of ankle foot orthosis (AFO) with artificial muscle, SICE Annual Conf., Tokyo, Japan, 2008, 2013–2017.
  79. [79] J.S. Sulzer, R.A. Roiz, M.A. Peshkin, and J.L. Patton, A highly backdrivable, lightweight knee actuator for investigating gait in stroke, IEEE Transactions on Robotics, 25(3), 2009, 539–548.
  80. [80] J. Kim, S. Hwang, R. Sohn, Y. Lee, and Y. Kim, Development of an active ankle foot orthosis to prevent foot drop and toe drag in hemiplegic patients: A preliminary study, Applied Bionics and Biomechanics, 8(3-4), 2011, 377–384.
  81. [81] E.A. Morris, K.A. Shorter, Y. Li, E.T. Hsiao-Wecksler, G.F. Kogler, T. Bretl, and W.K. Durfee, Actuation timing strategies for a portable powered ankle foot orthosis, Proc. ASME Conf. on Dynamic Systems and Control and Bath/ASME Symposium on Fluid Power and Motion Control, Arlington, Virginia, USA, 2011, 807–814.
  82. [82] D. Sasaki, T. Noritsugu, M. Takaiwa, and I.R.S.O. Japan, Development of pneumatic lower limb power assist wear without exoskeleton, Proc. IEEE/RSJ Conf. on Intelligent Robots and Systems, Vilamoura, Portugal, 2012, 1239–1244.
  83. [83] D. Sasaki, T. Noritsugu, and M. Takaiwa, Development of pneumatic lower limb power assist wear driven with wearable air supply system, Proc. IEEE/RSJ Conf. on Intelligent Robots and Systems, Tokyo, Japan, 2013, 4440–4445.
  84. [84] K. Shamaei, P.C. Napolitano, and A.M. Dollar, A quasipassive compliant stance control knee–ankle–foot orthosis, Proc. IEEE Conf. on Rehabilitation Robotics, Seattle, WA, USA, 2013, 1–6.
  85. [85] B. Shen, J. Li, F. Bai, and C.-M. Chew, Development and control of a lower extremity assistive device (LEAD) for gait rehabilitation, Proc. IEEE Conf. on Rehabilitation Robotics, Seattle, WA, USA, 2013, 1–6.
  86. [86] B. Shen, J. Li, and C.-M. Chew, Functional task based assistance during walking for a lower extremity assistive device, Proc. IEEE Conf. on Robotics and Automation, Hong Kong, China, 2014, 246–251.
  87. [87] M. Wehner, B. Quinlivan, P.M. Aubin, E. MartinezVillalpando, M. Baumann, L. Stirling, K. Holt, R. Wood, and C. Walsh, A lightweight soft exosuit for gait assistance, Proc. IEEE Conf. on Robotics and Automation, Karlsruhe, Germany, 2013, 3362–3369.
  88. [88] L.M. Mooney, E.J. Rouse, and H.M. Herr, Autonomous exoskeleton reduces metabolic cost of walking, Proc. IEEE Conf. on Engineering in Medicine and Biology Society, Chicago, IL, USA, 2014, 3065–3068.
  89. [89] T. Kanno, D. Morisaki, R. Miyazaki, G. Endo, and K. Kawashima, A walking assistive device with intention detection using back-driven pneumatic artificial muscles, Proc. IEEE/RAS/EMBS Conf. on Rehabilitation Robotics, Singapore, Singapore, 2015, 565–570.
  90. [90] H. Kim, C. Seo, Y.J. Shin, J. Kim, and Y.S. Kang, Locomotion control strategy of hydraulic lower extremity exoskeleton robot, Proc. IEEE/ASME Conf. on Advanced Intelligent Mechatronics, Busan, South Korea, 2015, 577–582.
  91. [91] H. Kim, Y.J. Shin, and J. Kim, Design and locomotion control of a hydraulic lower extremity exoskeleton for mobility augmentation, Mechatronics, 46, 2017, 32–45.
  92. [92] D. Lim, W. Kim, H. Lee, H. Kim, K. Shin, T. Park, J. Lee, and C. Han, Development of a lower extremity exoskeleton robot with a quasi-anthropomorphic design approach for load carriage, Proc. IEEE/RSJ Conf. on Intelligent Robots and Systems, Hamburg, Germany, 2015, 5345–5350.
  93. [93] D.M. Ka, H. Cheng, T.H. Toan, and Q. Jing, Minimizing human–exoskeleton interaction force using compensation for dynamic uncertainty error with adaptive RBF network, Journal of Intelligent and Robotic Systems, 82(3–4), 2016, 413–433.
  94. [94] K.D. Mien, C. Hong, T.T. Huu, and J. Qiu, Minimizing human–exoskeleton interaction force by using global fast sliding mode control, International Journal of Control Automation and Systems, 14(4), 2016, 1064–1072.
  95. [95] Z. Zhou, Y. Liao, C. Wang, and Q. Wang, Preliminary evaluation of gait assistance during treadmill walking with a light-weight bionic knee exoskeleton, Proc. IEEE Conf. on Robotics and Biomimetics, Qingdao, China, 2016, 1173–1178.
  96. [96] D.J. Hyun, H. Lim, S. Park, and K. Jung, Development of ankle-less active lower-limb exoskeleton controlled using finite leg function state machine, International Journal of Precision Engineering and Manufacturing, 18(6), 2017, 803–811.
  97. [97] Z.F. Lerner, D.L. Damiano, H.-S. Park, A.J. Gravunder, and T.C. Bulea, A robotic exoskeleton for treatment of crouch gait in children with cerebral palsy: design and initial application, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25(6), 2017, 650–659.
  98. [98] S. Thapa, H. Zheng, G.F. Kogler, and X. Shen, A robotic knee orthosis for sit-to-stand assistance, Proc. ASME Conf. Dynamic Systems and Control, Minneapolis, Minnesota, USA, 2017, V001T07A004.
  99. [99] L. Gui, Z. Yang, X. Yang, W. Gu, and Y. Zhang, Design and control technique research of exoskeleton suit, Proc. IEEE Conf. on Automation and Logistics, Jinan, China, 2007, 541–546.
  100. [100] H. Cao, Z. Ling, J. Zhu, Y. Wang, and W. Wang, Design frame of a leg exoskeleton for load-carrying augmentation, Proc. IEEE Conf. on Robotics and Biomimetics, Guilin, China, 2009, 426–431.
  101. [101] Y. Ding, I. Galiana, A. Asbeck, B. Quinlivan, S.M.M. De Rossi, and C. Walsh, Multi-joint actuation platform for lower extremity soft exosuits, Proc. IEEE Conf. on Robotics and Automation, Hong Kong, China, 2014, 1327–1334.
  102. [102] A.T. Asbeck, S.M.M. De Rossi, K.G. Holt, and C.J. Walsh, A biologically inspired soft exosuit for walking assistance, International Journal of Robotics Research, 34(6), 2015, 744– 762.
  103. [103] A.T. Asbeck, K. Schmidt, and C.J. Walsh, Soft exosuit for hip assistance, Robotics and Autonomous Systems, 73, 2015, 102–110.
  104. [104] Y. Ding, I. Galiana, C. Siviy, F.A. Panizzolo, and C. Walsh, IMU-based iterative control for hip extension assistance with a soft exosuit, Proc. IEEE Conf. on Robotics and Automation, Stockholm, Sweden, 2016, 3501–3508.
  105. [105] Y. Ding, F.A. Panizzolo, C. Siviy, P. Malcolm, I. Galiana, K.G. Holt, and C.J. Walsh, Effect of timing of hip extension assistance during loaded walking with a soft exosuit, Journal of Neuroengineering and Rehabilitation, 13, 2016, 87.
  106. [106] J. Deng, P. Wang, M. Li, W. Guo, F. Zha, and X. Wang, Structure design of active power-assist lower limb exoskeleton APAL robot, Advances in Mechanical Engineering, 9(11), 2017, 1687814017735791.
  107. [107] K. Schmidt, J.E. Duarte, M. Grimmer, A. Sancho-Puchades, H. Wei, C.S. Easthope, and R. Riener, The myosuit: biarticular anti-gravity exosuit that reduces hip extensor activity in sitting transfers, Frontiers in Neurorobotics, 11, 2017, 57.
  108. [108] G. Aguirre-Ollinger, J.E. Colgate, M.A. Peshkin, and A. Goswami, A 1-DOF assistive exoskeleton with virtual negative damping: Effects on the kinematic response of the lower limbs, Proc. IEEE/RSJ Conf. on Intelligent Robots and Systems, San Diego, CA, USA, 2007, 1938–1944.
  109. [109] G. Aguirre-Ollinger, J.E. Colgate, M.A. Peshkin, and A. Goswami, Design of an active one-degree-of-freedom lowerlimb exoskeleton with inertia compensation, International Journal of Robotics Research, 30(4), 2011, 486–499.
  110. [110] G. Aguirre-Ollinger, J.E. Colgate, M.A. Peshkin, and A. Goswami, Inertia compensation control of a one-degreeof-freedom exoskeleton for lower-limb assistance: initial experiments, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 20(1), 2012, 68–77.
  111. [111] U. Nagarajan, G. Aguirre-Ollinger, and A. Goswami, Integral admittance shaping for exoskeleton control, Proc. IEEE Conf. on Robotics and Automation, Seattle, WA, USA, 2015, 5641–5648.
  112. [112] G. Aguirre-Ollinger, U. Nagarajan, and A. Goswami, An admittance shaping controller for exoskeleton assistance of the lower extremities, Autonomous Robots, 40(4), 2016, 701–728.
  113. [113] U. Nagarajan, G. Aguirre-Ollinger, and A. Goswami, Integral admittance shaping: A unified framework for active exoskeleton control, Robotics and Autonomous Systems, 75, 2016, 310–324.
  114. [114] I. Kardan and A. Akbarzadeh, Assistive control of a compliantly actuated single axis stage, Int. Conf. on Robotics and Mechatronics, Tehran, Iran, 2016, 313–318.
  115. [115] I. Kardan and A. Akbarzadeh, Output feedback assistive control of single-DOF SEA powered exoskeletons, Industrial Robot-an International Journal, 44(3), 2017, 275–287.
  116. [116] W. Huo, S. Mohammed, Y. Amirat, and K. Kong, Active impedance control of a lower limb exoskeleton to assist sit-to-stand movement, Proc. IEEE Conf. on Robotics and Automation, Stockholm, Sweden, 2016, 3530–3536.
  117. [117] H.-T. Tran, H. Cheng, M.-K. Duong, and H. Zheng, Fuzzybased impedance regulation for control of the coupled human– exoskeleton system, Proc. IEEE Conf. on Robotics and Biomimetics, Bali, Indonesia, 2014, 986–992.
  118. [118] J.C. Perez-Ibarra, A.A.G. Siqueira, and H.I. Krebs, Assistas-needed ankle rehabilitation based on adaptive impedance control, Proc. IEEE/RAS/EMBS Conf. on Rehabilitation Robotics, Singapore, Singapore, 2015, 723–728.
  119. [119] Q. Liu, A. Liu, W. Meng, Q. Ai, and S.Q. Xie, Hierarchical compliance control of a soft ankle rehabilitation robot actuated by pneumatic muscles, Frontiers in Neurorobotics, 11(4), 2017, 64.
  120. [120] D. Martelli, F. Vannetti, M. Cortese, P. Tropea, F. Giovacchini, S. Micera, V. Monaco, and N. Vitiello, The effects on biomechanics of walking and balance recovery in a novel pelvis exoskeleton during zero-torque control, Robotica, 32(8), 2014, 1317–1330.
  121. [121] U. Haider, I.I. Nyoman, J.L. Coronado, C. Kim, and G.S. Virk, User-centric harmonized control for single joint assistive exoskeletons, International Journal of Advanced Robotic Systems, 13, 2016, 115.
  122. [122] M.J. Claros, R. Soto, J.L. Gordillo, J.L. Pons, and J.L. Contreras-Vidal, Robotic assistance of human motion using active-backdrivability on a geared electromagnetic motor, International Journal of Advanced Robotic Systems, 13, 2016, 40.
  123. [123] L. Saccares, I. Sarakoglou, and N.G. Tsagarakis, iT-Knee: an exoskeleton with ideal torque transmission interface for ergonomic power augmentation, Proc. IEEE/RSJ Conf. on Intelligent Robots and Systems, Daejeon, South Korea, 2016, 780–786.
  124. [124] T. Bacek, M. Moltedo, K. Langlois, G.A. Prieto, M.C. Sanchez-Villamanan, J. Gonzalez-Vargas, B. Vanderborght, D. Lefeber, and J.C. Moreno, BioMot exoskeleton – Towards a smart wearable robot for symbiotic human–robot interaction, Proc. IEEE Conf. on Rehabilitation Robotics, London, UK, 2017, 1666–1671.
  125. [125] S. Kim and J. Bae, Force-mode control of rotary series elastic actuators in a lower extremity exoskeleton using modelinverse time delay control, IEEE/ASME Transactions on Mechatronics, 22(3), 2017, 1392–1400.
  126. [126] L. Huang, J.R. Steger, and H. Kazerooni, Hybrid control of the Berkeley lower extremity exoskeleton (BLEEX), The International Journal of Robotics Research, 25(5–6), 2005, 561–573.
  127. [127] H. Kazerooni, Exoskeletons for human power augmentation, Proc. IEEE/RSJ Conf. on Intelligent Robots and Systems, Edmonton, Alberta, Canada, 2005, 3459–3464.
  128. [128] H. Kazerooni, J.L. Racine, L.H. Huang, and R. Steger, On the control of the Berkeley Lower Extremity Exoskeleton (BLEEX), Proc. IEEE Conf. on Robotics and Automation, Barcelona, Spain, 2005, 4353–4360.
  129. [129] R. Huang, H. Cheng, Q. Chen, T. Huu-Toan, and X. Lin, Interactive learning for sensitivity factors of a human-powered augmentation lower exoskeleton, Proc. IEEE/RSJ Conf. on Intelligent Robots and Systems, Hamburg, Germany, 2015, 6409–6415.
  130. [130] H. van der Kooij, B. Koopman, and E.H.F. van Asseldonk, Body weight support by virtual model control of an impedance controlled exoskeleton (LOPES) for gait training, Proc. IEEE Conf. on Engineering in Medicine and Biology Society, Vancouver, BC, Canada, 2008, 1969–1972.
  131. [131] O. Unluhisarcikli, M. Pietrusinski, B. Weinberg, P. Bonato, and C. Mavroidis, Design and control of a robotic lower extremity exoskeleton for gait rehabilitation, Proc. IEEE/RSJ Conf. on Intelligent Robots and Systems, San Francisco, CA, USA, 2011, 4893–4898.
  132. [132] K.N. Winfree, P. Stegall, and S.K. Agrawal, Design of a minimally constraining, passively supported gait training exoskeleton: ALEX II, Proc. IEEE Conf. on Rehabilitation Robotics, Zurich, Switzerland, 2011, 5975499.
  133. [133] D. Zanotto, T. Lenzi, P. Stegall, and S.K. Agrawal, Improving transparency of powered exoskeletons using force/torque sensors on the supporting cuffs, Proc. IEEE Conf. on Rehabilitation Robotics, Seattle, WA, USA, 2013, 1–6.
  134. [134] T. Lenzi, D. Zanotto, P. Stegall, M.C. Carrozza, and S.K. Agrawal, Reducing muscle effort in walking through powered exoskeletons, Proc. IEEE Conf. on Engineering in Medicine and Biology Society, San Diego, CA, USA, 2012, 3926–3929.
  135. [135] G. Aguirre-Ollinger, Learning muscle activation patterns via nonlinear oscillators: application to lower-limb assistance, Proc. IEEE/RSJ Conf. on Intelligent Robots and Systems, Tokyo, Japan, 2013, 1182–1189.
  136. [136] D. Zanotto, P. Stegall, and S.K. Agrawal, Adaptive assist-asneeded controller to improve gait symmetry in robot-assisted gait training, Proc. IEEE Conf. on Robotics and Automation, Hong Kong, China, 2014, 724–729.
  137. [137] T. Petric, A. Gams, T. Debevec, L. Zlajpah, and J. Babic, Control approaches for robotic knee exoskeleton and their effects on human motion, Advanced Robotics, 27(13), 2013, 993–1002.
  138. [138] W. van-Dijk, H. van-der-Kooij, B. Koopman, and E.H.F. van Asseldonk, Improving the transparency of a rehabilitation robot by exploiting the cyclic behaviour of walking, Proc. IEEE Conf. on Rehabilitation Robotics, Seattle, WA, USA, 2013, 1–8.
  139. [139] J. Kerestes, T.G. Sugar, and M. Holgate, Adding and subtracting energy to body motion – Phase oscillator, Proc. ASME Conf. Design Engineering Technical and Computers and Information in Engineering, Buffalo, New York, USA, 2014, V05AT08A004.
  140. [140] K. Seo, J. Lee, Y. Lee, T. Ha, and Y. Shim, Fully autonomous hip exoskeleton saves metabolic cost of walking, Proc. IEEE Conf. on Robotics and Automation, Stockholm, Sweden, 2016, 4628–4635.
  141. [141] J. Olivier, A. Ortlieb, M. Bouri, and H. Bleuler, Influence of an assistive hip orthosis on gait, in Advances in Intelligent Systems and Computing, vol. 540 (Cham: Springer, 2017), 531–540.
  142. [142] T.G. Sugar, E. Fernandez, D. Kinney, K.W. Hollander, and S. Redkar, HeSA, hip exoskeleton for superior assistance, in Wearable Robotics: Challenges and Trends, Biosystems and Biorobotics, vol. 16 (Cham: Springer, 2017), 319–323.
  143. [143] W. van-Dijk, C. Meijneke, and H. van-der-Kooij, Evaluation of the achilles ankle exoskeleton, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25(2), 2017, 151–160.
  144. [144] V.R. Garate, A. Parri, T. Yan, M. Munih, R.M. Lova, N. Vitiello, and R. Ronsse, Experimental validation of motor primitive-based control for leg exoskeletons during continuous multi-locomotion tasks, Frontiers in Neurorobotics, 11, 2017, 1–17.
  145. [145] A. Parri, T. Yan, F. Giovacchini, M. Cortese, M. Muscolo, M. Fantozzi, R.M. Lova, and N. Vitiello, A portable active pelvis orthosis for ambulatory movement assistance, in Wearable Robotics: Challenges and Trends, Biosystems and Biorobotics, vol. 16 (Cham: Springer, 2017), 75–80.
  146. [146] K. Kasaoka and Y. Sankai, Predictive control estimating operator’s intention for stepping-up motion by exo-skeleton type power assist system HAL, Proc. IEEE/RSJ Conf. Intelligent Robots and Systems, 2001, 1578–1583.
  147. [147] J.L. Contreras-Vidal and R.G. Grossman, NeuroRex: a clinical neural interface roadmap for EEG-based brain machine interfaces to a lower body robotic exoskeleton, Proc. IEEE Conf. on Engineering in Medicine and Biology, 2013, 1579–1582.
  148. [148] K. Lee, D. Liu, L. Perroud, R. Chavarriaga, and J.D.R. Millan, Endogenous control of powered lower-limb exoskeleton, in Wearable Robotics: Challenges and Trends, Biosystems and Biorobotics, vol. 16 (Cham: Springer, 2017), 115–119.
  149. [149] K. Gui, H. Liu, and D. Zhang, Toward multimodal human– robot interaction to enhance active participation of users in gait rehabilitation, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25(11), 2017, 2054–2066.
  150. [150] W. Meng, B. Ding, Z. Zhou, Q. Liu, and Q. Ai, An EMG-based force prediction and control approach for robotassisted lower limb rehabilitation, Proc. IEEE Conf. on Systems, Man and Cybernetics, San Diego, CA, USA, 2014, 2198–2203.
  151. [151] W. Meng, Y. Zhu, Z. Zhou, K. Chen, and Q. Ai, Active interaction control of a rehabilitation robot based on motion recognition and adaptive impedance control, Proc. IEEE Conf. on Fuzzy Systems, Beijing, China, 2014, 1436–1441.
  152. [152] Y. Fan, Z. Guo, and Y. Yin, sEMG-based neuro-fuzzy controller for a parallel ankle exoskeleton with proprioception, International Journal of Robotics and Automation, 26(4), 2011, 450–460.
  153. [153] S.-H. Lee, S.-N. Yu, H.-D. Lee, S.-J. Hong, C.-S. Han, and J.-S. Han, Proposal for a modular-type knee-assistive wearable unit and verification of its feasibility, Int. Symposium on Automation and Robotics in Construction, 2008, 187–194.
  154. [154] H. Kawamoto and Y. Sankai, Power assist system HAL-3 for gait disorder person, in Lecture Notes in Computer Science vol. 2398 (Berlin, Heidelberg: Springer, 2002), 196–203.
  155. [155] T. Kawabata, H. Satoh, and Y. Sankai, Working posture control of robot suit HAL for reducing structural stress, Proc. IEEE Conf. on Robotics and Biomimetics, Guilin, China, 2009, 2013–2018.
  156. [156] C. Fleischer, A. Wege, K. Kondak, and G. Hommel, Application of EMG signals for controlling exoskeleton robots, Biomedizinische Technik, 51(5–6), 2006, 314–319.
  157. [157] H. He and K. Kiguchi, A study on EMG-based control of exoskeleton robots for human lower-limb motion assist, Int. Special Topic Conf. on Information Technology Applications in Biomedicine, Tokyo, Japan, 2007, 292–295.
  158. [158] K. Kiguchi and Y. Imada, EMG-based control for lowerlimb power-assist exoskeletons, IEEE Workshop on Robotic Intelligence in Informationally Structured Space, Nashville, TN, USA, 2009, 19–24.
  159. [159] Y. Hayashi and K. Kiguchi, A lower-limb power-assist robot with perception-assist, Proc. IEEE Conf. on Rehabilitation Robotics, Zurich, Switzerland, 2011, 5975445.
  160. [160] Y. Hayashi and K. Kiguchi, Stairs-ascending/descending assist for a lower-limb power-assist robot considering ZMP, Proc. IEEE/RSJ Conf. on Intelligent Robots and Systems, San Francisco, CA, USA, 2011, 1755–1760.
  161. [161] K. Kiguchi, A. Komori, and T. Kouno, A study on motion modification force in perception-assist for a lower-limb powerassist exoskeleton, Proc. Int. Symposium on Soft Computing and Intelligent Systems, Kitakyushu, Japan, 2014, 1233–1237.
  162. [162] K. Kiguchi and Y. Yokomine, Perception-assist with a lowerlimb power-assist robot for sitting motion, Proc. IEEE Conf. on Systems Man and Cybernetics, Kowloon, China, 2015, 2390–2394.
  163. [163] Y. Chen, J. Hu, W. Wang, L. Peng, L. Peng, and Z.-G. Hou, An FES-assisted training strategy combined with impedance control for a lower limb rehabilitation robot, Proc. IEEE Conf. on Robotics and Biomimetics, 2013, 2037–2042.
  164. [164] Y. Fan and Y. Yin, Active and progressive exoskeleton rehabilitation using multisource information fusion from EMG and force-position EPP, IEEE Transactions on Biomedical Engineering, 60(12), 2013, 3314–3321.
  165. [165] L. Grazi, S. Crea, A. Parri, T. Yan, M. Cortese, F. Giovacchini, M. Cempini, G. Pasquini, S. Micera, and N. Vitiello, Gastrocnemius myoelectric control of a robotic hip exoskeleton, Proc. IEEE Conf. on Engineering in Medicine and Biology Society, Milan, Italy, 2015, 3881–3884.
  166. [166] J.R. Koller, D.A. Jacobs, D.P. Ferris, and C.D. Remy, Learning to walk with an adaptive gain proportional myoelectric controller for a robotic ankle exoskeleton, Journal of Neuroengineering and Rehabilitation, 12, 2015, 97.
  167. [167] A. Shabani and M.J. Mahjoob, Bio-signal interface for knee rehabilitation robot utilizing EMG signals of thigh muscles, Proc. Int. Conf. on Robotics and Mechatronics, Tehran, Iran, 2016, 228–233.
  168. [168] C. Mavroidis, J. Nikitczuk, B. Weinberg, R. Arango, G. Danaher, K. Jensen, M. Leahey, R. Pavone, P. Pelletier, A. Provo, J. Prugnarola, R. Stuart, and D. Yasevac, Smart portable rehabilitation devices, Journal of NeuroEngineering and Rehabilitation, 2(1), 2005, 18.
  169. [169] H. Kawamoto, S. Taal, H. Niniss, T. Hayashi, K. Kamibayashi, K. Eguchi, and Y. Sankai, Voluntary motion support control of robot suit HAL triggered by bioelectrical signal for hemiplegia, Proc. IEEE Conf. on Engineering in Medicine and Biology Society, Buenos Aires, Argentina, 2010, 462–466.
  170. [170] H.-Y. Huang, J.-S. Chen, and C.-E. Huang, Toward the gait analysis and control of a powered lower limb orthosis in ascending and descending stairs, Procedia Engineering, 79, 2014, 417–426.
  171. [171] N. Karavas, A. Ajoudani, N. Tsagarakis, J. Saglia, A. Bicchi, and D. Caldwell, Tele-impedance based assistive control for a compliant knee exoskeleton, Robotics and Autonomous Systems, 73, 2015, 78–90.

Important Links:

Go Back