THERMO-MECHANICAL BEHAVIOUR OF SMA WIRE EMBEDDED PDMS ACTUATOR TOWARDS SOFT ROBOTICS APPLICATIONS

M. Muralidharan,∗ K. Aishwarya,∗∗ R. Mithun,∗∗∗ and I.A. Palani∗

References

  1. [1] H. Lipson, “Challenges and opportunities for design, simulation, and fabrication of soft robots, Soft Robotics, 1(1), 2014, 21–27.
  2. [2] H. Banerjee, Z.T.H. Tse, and H. Ren, Soft robotics with compliance and adaptation for biomedical applications and forthcoming challenges, International Journal of Robotics and Automation, 2018, doi: 10.2316/Journal.206.2018.1.206-4981.
  3. [3] J. Zhang, H. Guo, T. Wang, and J. Hong, The design and motion analysis of a pneumatic omnidirectional soft robot, International Journal of Robotics and Automation, 2017, doi: 10.2316/Journal.206.2017.6.206-4908.
  4. [4] S. Coyle, C. Majidi, P. LeDuc, and K. Jimmy Hsia, Bioinspired soft robotics: Material selection, actuation, and design, Extreme Mechanics Letters, 22, 2018, 51–59.
  5. [5] J.M. Jani, M. Leary, A. Subic, and M.A. Gibson, A review of shape memory alloy research, applications and opportunities, Materials and Design, 56, 2014, 1078–1113.
  6. [6] A. Raj and A. Thakur, Fish-inspired robots: Design, sensing, actuation, and autonomy – A review of research. Bioinspiration & Biomimetics, 11, 2016, 031001.
  7. [7] S. Daroogheha and T. Radhakrishnan, An analysis for a mini robot gripper using SMA springs, International Journal of Robotics and Automation, 2007, doi: 10.2316/Journal. 206.2007.3.206-3011.
  8. [8] B. Wang, Y. Jin, M. Cheng, and W. Zhou, Model simulation and position control experiments of pneumatic muscle with shape memory alloy braided sleeve, International Journal of Robotics 8 and Automation, 2013, doi: 10.2316/Journal.206.2013.1.2063747.
  9. [9] S. Seok, C.D. Onal, K.-J. Cho, R.J. Wood, D. Rus, and S. Kim, Meshworm: A peristaltic soft robot with antagonistic nickel titanium coil actuators, IEEE/ASME Transactions on Mechatronics, 18(5), 2013, 1485–1497.
  10. [10] H. Rodrigue, W. Wang, D.-R. Kim, and S.-H. Ahn, Curved shape memory alloy-based soft actuators and application to soft gripper, Composite Structures, 176, 2017, 398–406.
  11. [11] J.-E. Shim, Y.-J. Quan, W. Wang, H. Rodrigue, S.-H. Song, and S.-H. Ahn, A smart soft actuator using a single shape memory alloy for twisting actuation, Smart Materials and Structures, 24, 2015, 125033 (10 pp).
  12. [12] W. Wang, J.-Y. Lee, H. Rodrigue, S.-H. Song, W.-S. Chu, and S.-H. Ahn, Locomotion of inchworm-inspired robot made of smart soft composite (SSC), Bioinspiration & Biomimetics, 9, 2014, 046006 (10 pp).
  13. [13] H. Rodrigue, B. Bhandari, M.-W. Han, and S.-H. Ahn, A shape memory alloy-based soft morphing actuator capable of pure twisting motion, Journal of Intelligent Material Systems and Structures, 26(9), 2015, 1071–1078.
  14. [14] H. Rodrigue, W. Wei, B. Bhandari, and S.-H. Ahn, Fabrication of wrist-like SMA-based actuator by double smart soft composite casting, Smart Materials and Structures, 24, 2015, 125003 (10 pp).
  15. [15] T. Sinn and R. Barrett, Design, manufacturing and test of a high lift secondary flight control surface with shape memory alloy post-buckled precompressed actuators, Actuators, 4, 2015, 156–171;
  16. [16] H. Rodrigue, W. Wang, B. Bhandari, M.-W. Han, and S.-H. Ahn, SMA-based smart soft composite structure capable of multiple modes of actuation, Composites Part B: Engineering, 82, 2015, 152–158.
  17. [17] W. Huang, On the selection of shape memory alloys for actuators, Materials & Design, 23(1), 2002, 11–19.
  18. [18] K. Otsuka and C.M. Wayman, Shape memory materials, Cambridge University Press, 16(1), 1999, 1–162.
  19. [19] T.W. Duerig and A.R. Pelton, Ti–Ni shape memory alloys, Materials Properties Handbook: Titanium Alloys, ASM International, 1994, 1035–1048.

Important Links:

Go Back