Jing He,∗ Changfan Zhang,∗ Houguang Chu∗∗∗


  1. [1] J.J. Gertler, Survey of model-based faults detection and isolation in complex plant, IEEE Control Systems Magazine, 8, 1988, 3–11.
  2. [2] S. Simani, C. Fantuzzi, and R.J. Patton, Model-based fault diagnosis in dynamic systems using identification techniques (London: Springer-Verlag, 2002).
  3. [3] Z. Shams and S. Seyedtabaii, Nonlinear flexible link robot joint-fault estimation using TS fuzzy observers, International Journal of Robotics and Automation, 5(1), 2020.
  4. [4] Z. Chu, D. Zhu, and S.X. Yang, Adaptive terminal sliding mode based sensorless speed control for underwater thruster, International Journal of Robotics and Automation, 31(3), 2016, 187–197.
  5. [5] C. Zhang, X. Cheng, J. He, and G. Liu, Automatic recognition of adhesion states using an extreme learning machine, International Journal of Robotics and Automation, 32 (20), 2017, 194–200.
  6. [6] S. Mao, H. Wu, M. Lu, and C.W. Cheng, Multiple 3D marker localization and tracking system in image-guided radiotherapy, International Journal of Robotics and Automation, 32(5), 2017, 517–523.
  7. [7] H.G. Zhang, Z.S. Wang, and D.R. Liu, A comprehensive review of stability analysis of continuous-time recurrent neural networks, IEEE Transactions on Neural Networks and Learning Systems, 25, 2014, 1229–1262.
  8. [8] H. Yang, Q.L. Han, X. Ge, L. Ding, Y. Xu, B. Jiang, and D.H. Zhou, Fault tolerant cooperative control of multi-agent systems: A survey of trends and methodologies, IEEE Transactions on Industrial Informatics, 16 (1), 2020, 4–17.
  9. [9] C. Edwards, S.K. Spurgeon, and R.J. Patton, Sliding mode observers for fault detection and isolation, Automatica, 36, 2000, 541–553.
  10. [10] Z. Zhu, J. Zhong, M. Ding, and M. Wang, Trajectory planning and hierarchical sliding-mode control of underactuated space robotic system, International Journal of Robotics and Automation, 35 (6), 2020.
  11. [11] K. Liu, Y. Wu, J. Xu, Y. Wang, Z. Ge, and Y. Lu, Fuzzy sliding mode control of 3-DOF shoulder joint driven by pneumatic muscle actuators, International Journal of Robotics and Automation, 34 (1), 2019, 38–45.
  12. [12] K.Y. Ng, C.P. Tan, and D. Oetomo, Enhance fault reconstruction using cascaded sliding mode observers, 12th IEEE Workshop on Variable Structure Systems, Mumbai, India, 2012, 208–213.
  13. [13] J. Zhang, A.K. Swain, and S.K. Nguang, Reconstruction of actuator fault for a class of nonlinear systems using sliding mode observer, American Control Conference, San Francisco, CA, 2011, 1370–1375.
  14. [14] B. Jiang, P. Shi, and Z.H. Mao, Sliding mode observerbased fault estimation for nonlinear networked control systems, Circuits, Systems and Signal Processing, 30, 2011, 1–16.
  15. [15] C. Edwards and S.K. Spurgeon, A sliding mode observer based FDI scheme for the ship benchmark, European Journal of Control, 6, 2013, 585–586.
  16. [16] B. Iskander, S. Anis, and B.H. Faycal, Robust sensor faults reconstruction for a class of uncertain linear systems using a sliding mode observer: An LMI approach, 2nd Mediterranean Conference on Intelligent Systems and Automation, 2009, 1107(1), 96–101.
  17. [17] A.B. Brahim, S. Dhahri, F.B. Hmida, and A. Sellami, Robust and simultaneous reconstruction of actuator and sensor faults via sliding mode observer, International Conference on Electrical Engineering and Software Applications, 2013, 1–6.
  18. [18] C.P. Tan and C. Edwards, Sliding mode observers for detection and reconstruction of sensor faults, Automatica, 38, 2002, 1815–1821.
  19. [19] X.G. Yan and C. Edwards, Sensor fault detection and isolation for nonlinear systems based on a sliding mode observer, International Journal of Adaptive Control and Signal Process, 21, 2007, 657–673.
  20. [20] H. Alwi, C. Edwards, and C.P. Tan, Sliding mode estimation schemes for unstable systems subject to incipient sensor faults, American Control Conference, Seattle, WA, 2008, 4703–4708.
  21. [21] R. Raoufi and H.J. Marquez, Simultaneous sensor and actuator fault reconstruction and diagnosis using generalized sliding mode observers, American Control Conference, Baltimore, MD, 2010, 7016–7021.
  22. [22] D.J. Lee, Y.J. Park, and Y.S. Park, Robust H∞ sliding mode descriptor observer for fault and output disturbance estimation of uncertain systems, IEEE Transactions on Automatic Control, 57, 2012, 2928–2934.
  23. [23] C.F. Zhang, H.G. Chu, J. He, L. Jia, and M.Y. Zhang, Sliding mode observer-based multi-fault reconstruction of nonlinear system, The 27th Chinese Control and Decision Conference (2015 CCDC), Qingdao, China, 2015, 3911–3916.
  24. [24] J. He, L. Mi, J.H. Liu, X. Cheng, Z.Z. Lin, and C.F. Zhang, Ring coupling-based collaborative fault-tolerant control for multi-robot actuator fault, International Journal of Robotics and Automation, 33 (6), 2018, 672–690.
  25. [25] M. Corless and J. Tu, State and input estimation for a class of uncertain systems, Automatica, 34, 1988, 757–764.
  26. [26] B. Jiang, M. Staroswiecki, and V. Cocquempot, Fault accommodation for nonlinear dynamic systems, IEEE Transactions on Automatic Control, 51, 2006, 1578–1583.
  27. [27] R. Rajamani and Y.M. Cho, Existence and design of observers for nonlinear systems: Relation to distance to unobservability, International Journal of Control, 69, 1998, 717–731.
  28. [28] B. Jiang, J.L. Wang, and Y.C. Soh, An adaptive technique for robust diagnosis of faults with independent effects on system output, International Journal of Control, 75, 2002, 792–802.
  29. [29] G. Huang, J. She, E.F. Fukushima, C. Zhang, and J. He, Robust reconstruction of current sensor faults for PMSM drives in the presence of disturbances, IEEE/ASME Transactions on Mechatronics, 24 (6), 2019, 2919–2930.
  30. [30] X. Zhang, T. Parisini, and M.M. Polycarpou, Sensor bias fault isolation in a class of nonlinear systems, IEEE Transactions on Automatic Control, 50, 2005, 370–376.
  31. [31] L. Jia, Y. Wang, J. He, L. Liu, Z. Li, and Y. Shen, Robust adaptive control based on machine learning and NTSMC for workpiece surface-grinding robot, International Journal of Robotics and Automation, 35(6), 2020, 444–453. 12

Important Links:

Go Back