Yangbo Feng,∗ Tinglong Tang,∗ Shengyong Chen,∗ and Yirong Wu∗


  1. [1] E. Mendez, G.M. Mafla, and F. Reyes, Analysis, review anddevelopment of a conceptual model, based on class diagramsas a component of UML, focused on industrial automation.International Journal of Robotics and Automation, 4(1), 2019,6–10.
  2. [2] B. Erik, M. Iman, H.E. Carl, and D.F.C. Neill, Nonparametricinference for auto-encoding variational bayes, arXiv e-prints,2017, vol. 1712.06536.
  3. [3] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A.Radford, and X. Chen, Improved techniques for training GANs,In Advances in Neural Information Processing Systems, CurranAssociates, 2016, 2234–2242.
  4. [4] T. Eric, H. Judy, S. Kate, and D. Trevor, Adversarial discrim-inative domain adaptation, IEEE Conference on ComputerVision and Pattern Recognition (CVPR), 2017, 2962–2971.
  5. [5] S.H. Khan, M. Hayat, M. Bennamoun, F.A. Sohel, and R.Togneri. Cost-sensitive learning of deep feature representationsfrom imbalanced data, IEEE Transactions on Neural Networks& Learning Systems, 29(8), 2018, 3573–3587.
  6. [6] Y.L. Tsung, G. Priya, G. Ross, K.M. He, and D. Piotr, Focalloss for dense object detection, IEEE Transactions on PatternAnalysis & Machine Intelligence, 99, 2017, 2999–3007.
  7. [7] A.S. Vishwanath and S. Sumit, Domain adaptation for au-tomatic OLED panel defect detection using adaptive supportvector data description, International Journal of ComputerVision, 122(2), 2017, 193–211.
  8. [8] A. Newson, A. Almansa, Y. Gousseau, and P. P´erez. Robustautomatic line scratch detection in films. IEEE Transactionson Image Processing, 23(3), 2014, 1240–1254.
  9. [9] T.M.T. Nhat and K. Sanghoon, Automatic image thresholdingusing Otsu’s method and entropy weighting scheme for surfacedefect detection, Soft Computing, 22(13), 2018, 4197–4203.
  10. [10] Z. Xiao, M. Wang, L. Geng, J. Wu, F. Zhang, and C.Shan, Optic cup segmentation method by a modified VGG-16network, Journal of Medical Imaging and Health Informatics,9(1), 2019, 97–101.
  11. [11] S. Targ, D. Almeida, and K. Lyman, Resnet in resnet:Generalizing residual architecture, eprint arXiv:1603.08029,2016.
  12. [12] I. J. Goodfellow, J. Abadie, M. Mirza, X. Bing, D.W. Farley, S.Ozair, A. Courville, and Y. Bengio, Generative adversarialnets,International Conference on Neural Information ProcessingSystems, Montr´eal Canada, 2014, 2672–2680.
  13. [13] A. Radford, L. Metz, and S. Chintala, Unsupervised rep-resentation learning with deep convolutional generative ad-versarial networks, Computer Science, arXiv: 1511.06434,2015.
  14. [14] Y. Yang, Z. Gong, Z. Ping, and J. Shan, Unsupervised repre-sentation learning with deep convolutional neural network forremote sensing images, Image and Graphics, ICIG, LectureNotes in Computer Science, Shanghai, China, 2017, 10667.
  15. [15] A. Kitchen and J. Seah, Deep generative adversarial neuralnetworks for realistic prostate lesion MRI synthesis, arXiv,CoRR, 2018, vol. abs/1708.00129.
  16. [16] M. Mardani, E. Gong, J.Y. Cheng, S.S. Vasanawala, andJ.M. Pauly, Deep generative adversarial neural networks forcompressive sensing (GANCS) MRI, IEEE Transactions onMedical Imaging, 38(1), 2018, 167–179.
  17. [17] A. Wulffff-Jensen, N.N. Rant, T.N. Miller, and J.A. Billeskov,Deep convolutional generative adversarial network for proce-dural 3D landscape generation based on DEM, Interactivity,Game Creation, Design, Learning, and Innovation, Cham:Springer, 2018, 85–94.
  18. [18] J. Zhang and Z. Shi, Deformable deep convolutional gener-ative adversarial network in microwave based hand gesturerecognition system, arXive-prints, 2017, vol. 1711.01968.
  19. [19] S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, andH. Lee, Generative adversarial text to image synthesis, arXive-prints, 2016, vol. 1605.05396.
  20. [20] M. Fabbri, S. Calderara, and R. Cucchiara, Generative adver-sarial models for people attribute recognition in surveillance,IEEE International Conference on Advanced Video & SignalBased Surveillance, Macao, China, 2017, 1–6.
  21. [21] L. Horsley and D. Perez-Liebana, Building an automatic spritegenerator with deep convolutional generative adversarial net-works, IEEE Conference on Computational Intelligence andGames (CIG), IEEE, New York, NY, USA, 2017.
  22. [22] C. Baur, S. Albarqouni, and N. Navab, MelanoGANs: Highresolution skin lesion synthesis with GANs, arXiv, 2018, vol.1804.04338.477
  23. [23] X. Zhang, J. Zou, K. He, and J. Sun, Accelerating verydeep convolutional networks for classification and detection,Computer Science, 2015, arXiv preprint: 1505.06798.
  24. [24] K. JiwonL.J. Kwon, and L.K.M. Jiwon, Accurate image super-resolution using very deep convolutional networks, IEEE Con-ference on Computer Vision and Pattern Recognition (CVPR),2016, Las Vegas, NV, USA, 1646–1654.
  25. [25] Y.M. Qian and P.C. Woodland, Very deep convolutional neuralnetworks for robust speech recognition, IEEE Spoken LanguageTechnology Workshop, San Juan, USA, 2016, 481–488.
  26. [26] S. Liu and W. Deng, Very deep convolutional neural networkbased image classification using small training sample size,IEEE IAPR Asian Conference on Pattern Recognition (ACPR),2016, 730–734.
  27. [27] R. Paul, Classifying cooking object’s state using a tunedVGG convolutional neural network, CoRR, 2018, vol.abs/1805.09391.
  28. [28] J. Miller, U. Nair, R. Ramachandran, and M. Maskey, Detectionof transverse cirrus bands in satellite imagery using deeplearning, Computers & Geosciences, 118, 2018, 79–85.
  29. [29] S.T. Hang and M. Aono, Open world plant image identificationbased on convolutional neural network, Signal & InformationProcessing Association Summit & Conference, IEEE, Lumpur,Malaysia, 2017, vol. 16602949.
  30. [30] Z. Meng, X. Fan,C. Xin, C. Min, and T. Yan, Detectingsmall signs from large images, IEEE International Conferenceon Information Reuse and Integration (IRI), San Diego, CA,USA, 2017, 217–224.
  31. [31] T. Akilan, J. Wu, and H. Zhang, Effect of fusing featuresfrom multiple DCNN architectures in image classification, IETImage Processing, 12(7), 2018, 1102–1110.
  32. [32] Z. Zheng, L. Zheng, and Y. Yang, Unlabeled samples generatedby GAN improve the person re-identification baseline in vitro,IEEE International Conference on Computer Vision (ICCV),IEEE Computer Society, Venice, Italy, 2017, 3774–3782.
  33. [33] G. Huang, Z. Liu, V.D.M. Laurens, and K.Q. Weinberger,Densely connected convolutional networks, IEEE Conferenceon Computer Vision and Pattern Recognition (CVPR), Hawaii,USA, 2017, 2261–2269.
  34. [34] K.M. He, X.Y. Zhang, S.Q. Ren, and J. Sun, Deep residuallearning for image recognition, IEEE Conference on ComputerVision and Pattern Recognition (CVPR), Las Vegas, NV, USA,2016, 770–778.
  35. [35] K. Simonyan and A. Zisserman, Very deep convolutional net-works for large-scale image recognition, Computer Science,2014, arXiv preprint: 1409.1556.

Important Links:

Go Back