Hamed H. Afshari, Andrew S. Lee, S. Andrew Gadsden, and Saeid R. Habibi


  1. [1] M.S. Grewal and A.P. Andrews, Kalman filtering: Theory andpractice using MATLAB, 2nd ed. (New York, NY: Wiley, 2001).
  2. [2] A.J. Krener, Kalman-Bucy and minimax filtering, IEEETransactions on Automatic Control, 25(2), 1980, 291–292.
  3. [3] M. Milanese and R. Tempo, Optimal algorithms theory forrobust estimation and prediction, IEEE Transactions onAutomatic Control, 30(8), 1985, 730–738.
  4. [4] S. Zhuk, Minimax state estimation for linear discrete-timedifferential-algebraic equations, Automatica, 46(11), 2010,1785–1789.
  5. [5] L. Xie, Y.C. Soh, and C.E. de Souza, Robust Kalman filteringfor uncertain discrete-time systems, IEEE Transactions onAutomatic Control, 39(6), 1994, 1310–1314.
  6. [6] T.H. Lee, W.S. Ra, T.S. Yoon, and J.B. Park, Robust Kalmanfiltering via krein space estimation, IEE Proceedings of ControlTheory and Applications, 151(1), 2004, 59–63.
  7. [7] F. Wang and V. Balakrishnan, Robust Kalman filters for lineartime-varying systems with stochastic parametric uncertainties,IEEE Transactions on Signal Processing, 50(4), 2002, 803–813.
  8. [8] A.H. Sayed, A framework for state-space estimation withuncertain models, IEEE Transactions on Automatic Control,46(7), 2001, 998–1013.
  9. [9] D. Simon, Optimal state estimation: Kalman, H-infinity, andnonlinear approaches. (Hoboken, NJ: Wiley, 2006).
  10. [10] M. Fu, C.E. de Souza, and L. Xie, H∞ estimation for uncertainsystems, International Journal of Robust and NonlinearControl, 2(2), 1992, 87–105.
  11. [11] B. Hassibi, A.H. Sayed, and T. Kailath, Indefinite quadraticestimation and control: A unified approach to H2 and H-infinity theories. (Philadelphia, PA: SIAM Studies in Appliedand Numerical Mathematics, 1999).
  12. [12] S.R. Habibi, The smooth variable structure filter, Proceedingsof the IEEE, 95(5), 2007, 1026–1059.
  13. [13] S.R. Habibi and R. Burton, The variable structure filter,ASME Journal of Dynamic Systems, Measurement and Control,125(3), 2003, 287–293.
  14. [14] S.A. Gadsden and S.R. Habibi, A new robust filtering strategyfor linear systems, Journal of Dynamic Systems, Measurement,and Control, 135(1), 2013, 14503.
  15. [15] G. Zames, Feedback and optimal sensitivity: Model referencetransformations, multiplicative seminorms, and approximateinverses, IEEE Transactions on Automatic Control, 26(2),1981, 301–320.
  16. [16] D. Simon, From here to infinity, Embeded Systems Program-ming, 14(11), 2000, 20–32.
  17. [17] S.A. Gadsden, Y. Song, and S. Habibi, Novel model-basedestimators for the purposes of fault detection and diagnosis,IEEE/ASME Transactions on Mechatronics, 18(4), 2013,1237–1249.
  18. [18] A.K. Mahalanabis and M. Farooq, A second-order method forstate estimation of non-linear dynamical systems, InternationalJournal of Control, 14(4), 1971, 631–639.
  19. [19] A. Zanj and H. Afshari, Dynamic analysis of a complexpneumatic valve using pseudo-bondgraph simulation technique,Journal of Dynamic Systems, Measurement, and Control,135(3), 2013, 34502.
  20. [20] H.H. Afshari, A. Zanj, and A.B. Novinzadeh, Dynamic analysisof a nonlinear pressure regulator using bondgraph simulationtechnique, Journal of Simulation, Modeling, Practice andTheory, 18(2), 2010, 240–252.
  21. [21] H.H. Afshari, S.A. Gadsden, and S.R. Habibi, Robust faultdiagnosis of an electro-hydrostatic actuator using the noveldynamic second-order SVSF and IMM strategy, InternationalJournal of Fluid Power, 15(3), 2014, 181–196.
  22. [22] H.H. Afshari, S. Gadsden, and S. Habibi, Condition monitoringof an electro-hydrostatic actuator using the dynamic 2nd-order smooth variable structure filter, Proc. ASME Int. DesignEngineering Technical Conf., Boston, MA, 2015, 1–6.
  23. [23] H.H. Afshari, D. Al-Ani, and S. Habibi, State estimationof a faulty actuator using the second-order smooth variablestructure filter (the 2ND-order SVSF), Proc. 28th IEEECanadian Conf. Electrical and Computer Engineering, Halifax,NS, 2015, 919–924.
  24. [24] M.S. Pedersen and K.B. Petersen, The matrix cookbook.(Copenhagen: Technical University of Denmark, 2008).
  25. [25] I. Hwang, S. Kim, Y. Kim, and C.E. Seah, A survey offault detection, isolation, and reconfiguration methods, IEEETransactions on Control Systems Technology, 18(3), 2010,636–653.
  26. [26] S.A. Gadsden, Smooth variable structure filtering: Theory andapplications, Ph.D. Thesis, McMaster University, Hamilton,ON, Canada, 2011.
  27. [27] M. Avzayesh, M. Abdel-Hafez, M. Al-Shabi, and S.A. Gadsden,The smooth variable structure filter: A comprehensive review,Digital Signal Processing, 110, 2021, 102912.
  28. [28] N.Y. Ko and T.G. Kim, Filtering method for location estimationof an underwater robot, International Journal of Robotics andAutomation, 3(3), 2014, 168–183.

Important Links:

Go Back