Chenliang An, Baoquan Li, Wuxi Shi, and Xuebo Zhang


  1. [1] H.J. Asl, G. Oriolo, and H. Bolandi, An adaptive schemefor image-based visual servoing of an underactuated UAV,International Journal of Robotics and Automation, 29, 2014,92104.
  2. [2] D. Zheng, H. Wang, J. Wang, X. Zhang, and W. Chen, Towardvisibility guaranteed visual servoing control of quadrotorUAVs, IEEE/ASME Transactions on Mechatronics, 24, 2019,10871095.
  3. [3] C. Yin, B. Li, W. Shi, and N. Sun, Monitoring-based visualservoing of wheeled mobile robots, International Journal ofRobotics and Automation, 34, 2019, 230330.
  4. [4] D. Zheng, H. Wang, W. Chen, and Y. Wang, Planning andtracking in image space for image-based visual servoing of aquadrotor, IEEE Transactions on Industrial Electronics, 65,2018, 33763385.
  5. [5] I. Sa, M. Kamel, M. Burri, M. Bloesch, et al., Build yourown visual-inertial drone: A cost-effective and open-sourceautonomous drone, IEEE Robotics and Automation Magazine,25, 2018, 89103.
  6. [6] K. Guo and L. Xie, Infrastructure-free cooperative relativelocalization for UAVs in GPS-denied environments, Interna-tional Journal of Robotics and Automation, 36, 2021, 425433.
  7. [7] G. Zeng, Y. Bai, C. Liu, K. Cui, and H. Yue, Multitaskassignment of swarming UAVs based on improved PSO,International Journal of Robotics and Automation, 36, 2021,188195.
  8. [8] Y. Wang, G. Zong, D. Yang, and K. Shi, Finite-time adaptivetracking control for a class of nonstrict feedback nonlinearsystems with full state constraints, International Journal ofRobust and Nonlinear Control, 32, 2022, 25512569.
  9. [9] M. Li and A.I. Mourikis, Online temporal calibration forcamera-IMU systems: Theory and algorithms, InternationalJournal of Robotics Research, 33, 2014, 947964.
  10. [10] K. Sun, K. Mohta, B. Pfrommer, M. Watterson, S. Liu, Y.Mulgaonkar, C.J. Taylor, and V. Kumar, Robust stereo visualinertial odometry for fast autonomous flight, IEEE Roboticsand Automation Letters, 3, 2018, 962972.
  11. [11] A. Martinelli, Closed-form solution of visual-inertial structurefrom motion, International Journal of Computer Vision, 106,2014, 138152.
  12. [12] G. Huang, Visual-inertial navigation: A concise review, Proc.IEEE Int. Conf. Robot. Autom., Montreal, QC, 2019, 95729582.
  13. [13] A. I. Mourikis and S. I. Roumeliotis, A multi-state constraintKalman filter for vision-aided inertial navigation, Proc. IEEEInt. Conf. Robot. Autom., Rome, 2007, 35653572.
  14. [14] M. Li and A.I. Mourikis, High-precision, consistent EKF-basedvisual-inertial odometry, International Journal of RoboticsResearch, 32, 2013, 690711.
  15. [15] K. Eckenhoff, P. Geneva, and G. Huang, Closed-form prein-tegration methods for graph-based visual-inertial navigation,International Journal of Robotics Research, 38, 2019, 563586.
  16. [16] Y. He, J. Zhao, Y. Guo, W. He, and K. Yuan, PL-VIO: Tightly-coupled monocular visual–inertial odometry using point andline features, Sensors, 18, 2018, 1159.
  17. [17] S. Leutenegger, P. Furgale, V. Rabaud, M. Chli, K. Konolige,and R. Siegwart, Keyframe-based visual-inertial SLAM usingnonlinear optimization, International Journal of RoboticsResearch, 34, 2015, 314334.
  18. [18] T. Qin, P. Li, and S. Shen, VINS-Mono: A robust and versatilemonocular visual-inertial state estimator, IEEE Transactionson Robotics, 34, 2018, 10041020.
  19. [19] R. Dong, C. Liu, X. Wang, and X. Han, 3D path planning ofUAVs for transmission lines inspection, International Journalof Robotics and Automation, 35, 2020, 269282.
  20. [20] S. Liu, N. Atanasov, K. Mohta, and V. Kumar, Search-basedmotion planning for quadrotors using linear quadratic minimumtime control, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.,Vancouver, BC, 2017, 28722879.
  21. [21] M. Kazemi, K. K. Gupta, and M. Mehrandezh, Randomizedkinodynamic planning for robust visual servoing, IEEETransactions on Robotics, 29, 2013, 11971211.
  22. [22] M. Barbehenn, A note on the complexity of Dijkstra’s algorithmfor graphs with weighted vertices, IEEE Transactions onComputers, 47, 1998, 263.
  23. [23] K. Hausman, J. Preiss, G.S. Sukhatme, and S. Weiss,Observability-aware trajectory optimization for self-calibrationwith application to UAVs, IEEE Robotics and AutomationLetters, 2, 2017, 17701777.
  24. [24] A. Bircher, M. Kamel, K. Alexis, H. Oleynikova, and R.Siegwart, Receding horizon path planning for 3D explorationand surface inspection, Autonomous Robots, 42, 2018, 291306.
  25. [25] B. Zhou, F. Gao, L. Wang, C. Liu, and S. Shen, Robust andefficient quadrotor trajectory generation for fast autonomousflight, IEEE Robotics and Automation Letters, 4, 2019,35293536.
  26. [26] N. Guenard, T. Hamel, and V. Moreau, Dynamic modelingand intuitive control strategy for an “X4-flyer”, Proc. IEEEInt. Conf. Control Autom., Budapest, 2005, 141146.
  27. [27] S. Bouabdallah, P. Murrieri, and R. Siegwart, Towardsautonomous indoor micro VTOL, Autonomous Robots, 18,2005, 171183.
  28. [28] T. Lee, M. Leok, and N. McClamroch, Geometric trackingcontrol of a quadrotor UAV on SE(3), Proc. IEEE Contr. Deci.Conf., Atlanta, GA, 2010, 54205425.
  29. [29] J. Jiang, X.T. Zhang, J. Yuan, and X. Zhang, Extendable flightsystem for commercial UAVs on ROS, Proc. Chinese Contr.Conf., Wuhan, 2018, 53985403.
  30. [30] H. Zhong, Z. Miao, Y. Wang, J. Mao, et al., A practicalvisual servo control for aerial manipulation using a sphericalprojection model, IEEE Transactions on Industrial Electronics,67, 2020, 1056410574.
  31. [31] S. Saripalli, J.F. Montgomery, and G.S. Sukhatme, Visuallyguided landing of an unmanned aerial vehicle, IEEETransactions on Robotics and Automation, 19, 2003, 371380.
  32. [32] B. Herisse, T. Hamel, R. Mahony, and F.-X. Russotto, Landinga VTOL unmanned aerial vehicle on a moving platform usingoptical flow, IEEE Transactions on Robotics, 28, 2012, 7789.
  33. [33] T. Yang, P. Li, H. Zhang, J. Li, and Z. Li, Monocular visionSLAM-based UAV autonomous landing in emergencies andunknown environments, Electronics, 7, 2018, 73.
  34. [34] B. Hu, and S. Mishra, Time-optimal trajectory generation forlanding a quadrotor onto a moving platform, IEEE/ASMETransactions on Mechatronics, 24, 2019, 585596.
  35. [35] W. Kong, D. Zhou, Y. Zhang, D. Zhang, and J. Zhang, Aground-based optical system for autonomous landing of a fixedwing UAV, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.,Chicago, IL, 2014, 47974804.
  36. [36] T. Yang, Q. Ren, F. Zhang, B. Xie, H. Ren, J. Li, and Y. Zhang,Hybrid camera array-based UAV auto-landing on movingUGV in GPS-denied environment, Remote Sensing, 10, 2018,1829.
  37. [37] J. Ajmera, P.R. Siddharthan, K.M. Ramaravind, G. Vasan, N.Balaji, and V. Sankaranarayanan, Autonomous visual trackingand landing of a quadrotor on a moving platform, Proc. Int.Conf. Image Inf. Process., Waknaghat, 2016, 342347.
  38. [38] C. An, G. Xi, and B. Li, An extensible framework of monocularSLAM with depth recovery for an unmanned aerial vehicle,Proc. IEEE Int. Conf. Real-time Comput. Robot., Asahikawa,2020, 274279.304

Important Links:

Go Back